AN
ARCHITECTURAL
CONTRAST:

The M68000 Microprocessor Family
and the
8086/iAPX 286

November, 1983

READ THIS

before your competition does.
Be certain your company is not
investing in obsolete designs.

ROUTE TO:

Additional copies may be obtained from your
nearest Motorola sales office (see back cover).

BR147

TABLE OF CONTENTS

SUMMARY ..o i

FORWARD
The M68000 Family:
Some Design Philosophies

ARCHITECTUREccoeeveceverireieeiervennenn ii
Applicationccoeevvvvvevieviiiirinennne. i
Instructionscccccuvvvveruennne. ererereeas ii
Bus Structurecoeevvvvvvvvvvirneinnnns i

COMPATIBILITY oveveeeereeescreireisesireseenaens iii
Existing Softwarecccevvvivvvevrunnns iii
CoOmMPromisecccoeevvevvvrvvevcireesirennns iii
FULUIE ... iii

PERFORMANCEoocoeveeievercrrnrenirennens iii
Data TYpescccccovvvvvevvevssvssensiensisnnns iii
Register Store Sizeccovvvveivvvrnnns iii
Address Space Sizecccceevcveiuennn.. iii

THE CREATION OF AN ADVANCED

ARCHITECTUREcuvecveveeeesecciesesiennnen, iv
Architectural Sizecccevvevvvreiennn, iv
Linear Addressingccccccuvvvvveennenn. iv
Data Register Sizecccovvevrueenen.. iv
General Purpose Registers iv
Register Set Sizeccevvevvvecvvnennnnn. v

THE BEGINNING OF A FAMILY v
Family Members At Present v
EXtensionscccevvveevcvvvsvnsssinnsinnnn, v

AN ARCHITECTURAL CONTRAST:

The M68000 Microprocessor Family

and the
8086/iAPX 286
GENERAL FEATUREScccccvvvenerieennnnene 1
Register Set Alternativesccc..u. 1
Register Scheme — General
Purpose versus Dedicated 2
Source of the iAPX 286 Register Set
Problem? — 8086ccccccerenveennne 4
VIRTUAL MEMORYccooevirrrrrierceesennne 5
iAPX 286's Virtual Claims 5
True Virtual Memory Facilities 7

More Advantages with Motorola’s

True Virtual Memorycccoccevennnen. 7

DATA TYPES AND OPERATIONS
32 Bits Since the Beginning
Bit Manipulationcccccceeevveevernnnnn.
Register and Addressing Mode
Flexibilitycccoccvmnieircireceseeeeenens
IAPX 286 Just Doesn't Stack Up
Indexed and Absolute Addressing
iIAPX 286 Does Not Offer Absolute
Addressingcccvcveiiciieneeee e
Program Counter Variances

INSTRUCTION SET ..o
Stack Operationcceeevvevrererrernnen.
String Manipulationcccoevvevenene..
Branchingcccccceveviviiiccnecre e
Memory-to-Memory Arithmetic
The iAPX 286 Single Accumulator

CODE COMPATIBILITY
ACROSS A FAMILYcccoovvvvrereriennas

M68000 FAMILY COMPATIBILITY
MC68000 to MC68008 Compatibility ...
MC68000 to MC68010 Compatibility ...
MC68000 to MC68020 Compatibility ...
Application Level Object Code

Compatibilityccccccevvvvirieircreenen,
MC68010 Change 1cccecevvevieireinnnnns
MC68010 Change 2cocverveevveineenne

iAPX 286 COMPATIBILITYcccceevvererrnenne
Operational Modesccccceverevnnnene
Segment Wrapcccccvvvvveeveineiennens
= TV o od (] 4T
Protected Mode Operation
8086 Application Program
Compatibilitycccccevvenrvrvriiiienrnen,
Segment Base Address
Carnegie-Mellon Benchmark Code ...
Guide for an 8086 Code Writer
Operating System Compatibility
Future Operating System
Compatibilitycccvvviriieiiiiieennnen,
SUMMANY .o

PRIVILEGE LEVEL PROTECTION

MEMORY MANAGEMENTc.occevvruvnnne
iAPX 286 Segments
Limit Compatibility
with Today’s Systems
Incrementing a Smalltalk or
Graphics String Pointer

1
13

13
14
15
16
17
17

Artificial Intelligence Research
Cannot Use the iAPX 286 28
Dynamic Storage Areas and
Sophisticated Software Systems ...
Massive Descriptor Overhead for All
iAPX 286 Native Mode Operating

SYSIEMS ...oovvvrrecee e, 31
/0 INTERRUPTS ON THE MC68000 AND
THE iAPX 286 ..ccooovveeeeeeeeeeieeeeeeeeeieeeeeeeeen 31
MCG68000 Versionceeeeevevvvniieernreens 31
Fastest iAPX 286 Versionccceeenn. 31
Most Common iAPX 286 Version 32
Task Switch iAPX 286 Version 32
SUMMATY oo 33
Intel Architecture Foils Intel’s Own
Programmersccccevvveeeeniisinnnenen. 33
PACKAGING ..cooovveevevevreeeerneennressessessseseseseen 34
Power Considerationscccceeeeireennne 34
““Worst Case’’ Calculationsc....... 34
CONCIUSIONS cooeveeeeiieieieieee e 35
SUMMARY ..oovvveveeieeeeersrreessssssssssrssssssesssssene 35
APPENDIX A
MC68000 Pascal is 45% Faster Than
iAPX 286 Pascalccocevernrnrnrvennennnne 36
APPENDIX B
Independent Benchmarks Show
MC68000 Faster Than iAPX 286 36
APPENDIX C
iAPX 286 Substring Benchmark 37
APPENDIX D
Motorola MC68000 Quicksort 39
APPENDIX E

Intel 8086 Quicksortccccveeeinnienninns 42

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

Fig
Fig
Fig
Fig

Fig

LIST OF ILLUSTRATIONS

Title
1 M68000 Register Set
2 iAPX 286 Register Set
3 iAPX 286 Segment Register
Matching Scheme
4 Data Types Supported
Directly by Instructions
5 32-Bit Instruction Set
Comparisonccceeeevvveeen.
6 Comparative Opcode
Example for ADD
Instructionscccccevvinennne
7 Addressing Combinations
Available for Accessing
(D | £- [N
8 Comparison of Available
Addressing Modes
9 New iAPX 286 Instructions
and their M68000
Equivalentscccccoveeeeennn.

. 10 M68000 Family String

Operationsccccceveccvveennne

. 11 String Operations Contrast ...
. 12 iAPX 286 Programming

Guidelines for 8086
Compatibilityccccccuveennne

. 13 Dynamic Storage Allocation

on the MC68000

. 14 Dynamic Storage on the

IAPX 286ccovvviiiiiiiininns

wWwnN

10

10

1

14

15
16

SUMMARY

The definition of a microprocessor’s architec-
ture involves many tradeoff decisions and im-
pacts in very important ways the speed, effi-
ciency and reliability of any computer system
based on that architecture.

The Motorola M68000 Family of microproces-
sors implements a clean and powerful 32-bit
architecture with general purpose registers
and orthogonal addressing modes. A break
with full compatibility to older 8-bit architec-
tures was necessary so that advanced con-
cepts could be introduced by the all-new 8/16/
32-bit M68000 Family. The result was a new
architecture which encompasses features re-
quired of today’s system solutions and those
for the rest of this decade and beyond, with
complete user object-code compatibility.

In contrast to M68000 architecture, the iAPX
286 is weighted down with the instruction set
of the much older 8086, with all of the cum-
bersome attributes associated with such an-
cient chip designs.

As a result, such crippling concepts as seg-
mented addressing and special purpose reg-
isters rule the inflexible philosophy of iAPX
architecture. These exact their harsh penalties
in a multitude of ways, including excessive
object code generation — which causes painful
complexities in the integration of large, intri-
cate software systems — and forcing at least
seven times slower-than-M68000 execution in
the accessing and addressing of large array
and data structures.

The decision to implement direct 16-megabyte
linear addressing was one of the greatest fac-

tors in the industry-wide acceptance of the
M68000 Family. Contrast this to the mere 64K-
byte segmented accesses of the iAPX 286. This
forces extra manipulations on programmers,
who must constantly attempt to contort their
way around the severe limitations of restrictive
registers and addressing modes.

The iAPX 286 does not even support virtual
memory, but only a virtual segment restart ca-
pability. Contrast this with the virtual 1/O, vir-
tual machine and virtual window concepts
available with Motorola’s M68000 architecture.

The 32-bit architecture of M68000 Family mi-
croprocessors stands in stark contrast to the
16-bit segmented 8086/iAPX 286. Remarkable
differences appear in performance, implemen-
tations, ease-of-use, code and execution effi-
ciency between the two architectures when
they are applied to actual programming
environments.

In all important respects, the M68000 Family
is seen to be far superior to the antiquated
8086/iAPX 286 architecture and fulfills the
more sophisticated needs and requirements of
today’s demanding software systems and
methodologies.

This document details the contrasting M68000
and 8086/iAPX 286 architectures.

In the final analysis and selection of a
microprocessor vendor, you will
undoubtedly require information beyond
the scope of this document. Please refer
to the back cover to locate your closest
Motorola sales office.

FORWARD

The M68000 Family:
Some Design Philosophies

Many topics must be considered when an
Original Equipment Manufacturer (OEM) se-
lects a microprocessor for a target product. The
importance of each of these topics varies be-
tween OEMs, and the evaluation of each is in-
dividual to each OEM.

This forward presents a general set of topics
that are typically evaluated and how the M68000
Family relates. M68000 and iAPX 286 proces-
sors’ architectures will then be compared in
detail.

In analyzing the suitability of a particular mi-
croprocessor for use in a product, some of the
areas of concern that arise are:

Performance
Need for product
Capability

Effort to design in
Ease of use
Reliability

Future

There is much to consider in each of these
areas, spanning both the software and hard-
ware issues about a microprocessor. But, per-
haps the most important consideration in
choosing a microprocessor is the architectural
philosophy around which the chip was de-
signed. Almost all of the other considerations
are heavily influenced by that architecture.

All of these issues will be examined here, with
an emphasis on architectural concepts.

ARCHITECTURE

There are many different philosophies for com-
puter architectures; each has its own relative
merits. In designing a powerful, general-
purpose microprocessor, a manufacturer must
choose an architecture that best serves a wide
variety of applications for a large number of
customers. Certainly, all applications cannot
be best served by a single processor, but a

i

manufacturer must target product design for
the largest percentage of applications to re-
main profitable.

To address the needs of the largest share of
an open market, a microprocessor’s architec-
ture must not impose numerous restrictions
on the user. A general-purpose architecture
provides maximum flexibility for the user. This
is the common thread of the M68000 Family
— power, with flexibility.

Application. Processors designed with a
general-purpose architecture can be easily
used in far more applications than a processor
which was designed for a particular applica-
tion. However, general-purpose processors
will usually not perform as well in a specific
application as a processor that was specifically
designed for that particular application.

For example, a processor designed specifically
for navigational applications would operate
quite well in an aircraft guidance system, but
quite poorly in a word processor. A general-
purpose processor would perform reasonably
well in both applications.

Instructions. Instructions which can use any
register that is available relieve the resource
bottlenecks caused by instructions requiring
specific registers. A general-purpose architec-
ture can be adapted to many high-level lan-
guages, whereas, while a processor which is
designed for a specific language will execute
that language extremely well, it will execute
most others quite poorly.

For example, a processor designed to run For-
tran will execute Fortran very well, but not Pas-
cal. The general-purpose processor will per-
form reasonably well with both languages.

Bus Structure. Bus structure should aid, not
hinder, the hardware designer. It is easier and
less expensive to build a system if the bus al-
lows mixing of many memory and peripheral
speeds and configurations. Special bus con-
trollers and peripherals only raise the cost of
the system and restrict flexibility.

Built-in support for 32 bits is mandatory if pain-
ful redesigns are to be avoided in the future.

COMPATIBILITY

Existing Software. Another architectural con-
sideration should be compatibility with an ex-
isting architecture, allowing use of the existing
software base of that older architecture. This
very significant factor could sometimes offset
the costs of developing similar software for the
new architecture.

Compromise. However, without quite a bit of
care and forethought, compatibility with too
old an architecture can lead to too many com-
promises being made and subsequent loss of
the computing power available in modern mi-
croprocessors. This is especially true when the
original architecture was not designed to allow
much room for expansion, or was already an
extension of another design. Extensions of
some architectures may compromise perfor-
mance or ease-of-use unless those extensions
were planned in the original product.

Eventually, in order to effectively implement
all of the new-and-improved as well as tried-
and-true operations in a microprocessor, com-
patibility with the older architectures must be
abandoned. Also, the extent to which code
compatibility is maintained, short of 100%, can
degrade the advantage of compatibility and
place greater burden on the user.

This desire for compatibility is justifiably ended
when the advantages of the newer operations
available in processors with a different archi-
tecture outweigh the disadvantages of incom-
patibility with the older architecture.

As an example: older programs often perform
functions which are no longer needed, have
been superceded by faster algorithms, or sim-
ply have been patched so many times that they
are much too burdensome to use. These pro-
grams have become useless as such, and,
when easily rewritten for a new architecture,
will always run faster.

Future. When designing a new architecture for
a processor, future code compatibility can be

iii

“built in.” An architecture must be designed
with future requirements in mind, allowing for
those ideas which have not yet come to fruition
and leaving sufficient room for extention be-
yond what is possible for the present design.

Designing an architecture for performance
higher than what can be realized at present,
and then adjusting that architecture to today’s
capabilities, leaves plenty of room for future
expansion. This allows expansion by design
rather than by compromise.

PERFORMANCE

Data Types. The speed of program execution
is related to many facets of a microprocessor’s
architecture. One of these is the applicability
of the data types offered.

If a system makes high use of 32-bit data, for
example, but the microprocessor’s architec-
ture only has 16-bit registers, then obviously
unacceptable performance will result. If bit
manipulations are heavily involved, such as
with operating system execution decisions,
then an architecture without bit instructions is
likely to be awkward and slow at performing
such functions.

Register Store Size. A wide register space has
several very important advantages. Most arith-
metic results can be completely contained in
the high-speed registers instead of being
swapped in and out of auxiliary memories. A
large register space offers another advantage:
significant optimizations can be done by high-
level compilers.

If an architecture supports only a single reg-
ister for multiply and divide, think of the dis-
astrous bottleneck caused by the management
of values through this one register.

Address Space Size. High performance sys-
tems demand quick access to large data stores.
Modern computer systems must manipulate
large structures for such things as sorting,
graphics processing, database searches, and
heavy number crunching, plus support multi-
user, multi-tasking operations.

Any architecture which prohibits or compro-
mises large data structures cannot run any of
these applications (and many others) efficiently.

THE CREATION OF AN ADVANCED
ARCHITECTURE

The 16-bit MC68000 microprocessor pioneered
an entirely new architecture. Much of the ex-
perience from the MC6800, MC6801, and
MC6809 microprocessors, many of the ideas
appreciated by programmers in popular min-
icomputers, and some innovative current and
future concepts in computer architectures, all
culminated in the design of the MC68000's ar-
chitecture. Ties to the more primitive architec-
tures of 8-bit machines were severed in all but
the most necessary areas — such as the ob-
vious advantages of already-available 8-bit pe-
ripherals. This left the computer architects the
freedom to incorporate modern computer sci-
ence techniques in the flagship microproces-
sor of a new family of compatible 8/16/32-bit
microprocessors: the M68000 Family.

Architectural Size. An early architectural con-
cern in the design of the MC68000 micropro-
cessor was the realization that the 64-kilobyte
address range of a 16-bit address would not
be sufficient for a new breed of microproces-
sor. Though expressing 16-bit addresses in a
16-bit microprocessor seemed easy and code
efficient, this small code and data space would
eventually render the processor useless.

Various address sizes greater than 16 bits were
studied. Ways of prefixing a few extra bits to
the 16-bit address would encumber the pro-
grammer and/or require the additional bits to
be carried in the opcode. If additional bits had
to be maintained, the next logical question was
how many: 24 or 32?

It soon became obvious that the next logical
address size was 32 bits, and the decision was
made to go ahead and design the address size
as a 32-bit value with a temporary limit at 24
bits. This limit was made primarily to make the
number of pins on the package consistent with
current packaging technology.

Linear Addressing. There are many techniques
of extending an address beyond 16 bits. These

iv

include: 1) retaining a linear address space; 2)
paging fixed-size memory blocks; and 3) seg-
mentation of variably-sized blocks. Paging
techniques have been used for many years to
simply extend the address range of proces-
sors. Segmentation is a little more involved
and allows more flexibility in the placement of
the memory blocks. While paging and seg-
mentation are fairly easy to implement in pro-
cessor design, their monumental disadvan-
tages evolve from the fact that they are only
ways of working around a basic shortcoming
— the 16-bit address.

The MC68000 designers realized that although
32-bit linear addressing required their design
of more addressing bits than either paging or
segementation schemes, the approach did not
impose any artificial boundaries- on the pro-
grammer and allowed vastly more freedom in
writing programs. Therefore, the MC68000 was
designed to support a full 32-bit linear address
space and not force the programmer to main-
tain time-consuming paging or segmentation
registers.

Data Register Size. With the 32-bit address
size, it then seemed natural to design the data
handling capability to 32 bits. This would ease
the programmer’s job by eliminating discrep-
ancies between different data and address reg-
ister sizes.

Data quantities of 32 bits would also extend
the architecture a good distance into the future,
not only by handling the 16-bit needs of the
present, but also the 32-bit needs to come.
Again, practical considerations in the pin count
of the present day dual-in-line packages di-
rected the present limitation of the external
data path to 16 bits. Now that additional data
paths are being added with the Pin Grid Array
(PGA) package, the M68000 Family micropro-
cessors allow you to take greater advantage of
the Family’s 32-bit capability. Bus control cir-
cuitry allows 32-bit transfers to take place us-
ing multiple memory accesses.

General Purpose Registers. General purpose
registers are placed in processors to provide
high speed access to commonly used varia-
bles. Programmers must have total freedom

in the way those registers are allocated and
used or else the original intent of the registers
(high speed access) is defeated.

If the registers have dedicated uses, and this
dedication forces the programmer to con-
stantly swap information in and out of them,
the data might just as well stay out in memory.
This emphasizes the need for true general-pur-
pose registers — those which may be assigned
at will —to provide real programming efficiency.

Register Set Size. The MC68000 general pur-
pose register set consists of eight 32-bit data
registers in which all types of data can be ma-
nipulated and eight 32-bit address registers
where memory pointers may reside. Of these
sixteen registers, the only dedicated use in-
volves the processor’s use of one as the stack
pointer for subroutine and interrupt services.
Otherwise, any data or address register may
be used as an operand or as a pointer.

Thus, the design of M68000 Family micropro-
cessors’ architecture was finialized to a full 32-
bit linear addressing range and data handling
capability, with all registers handling 32-bit
qguantities in an undedicated manner.

Time has proven the wisdom of those deci-
sions as the limitations of a 64-kilobyte ad-
dressing range have caused programmers nu-
merous headaches as they find that present-
day data and program sizes easily require
much more than this range. Additionally, the
simplicity of the linear address space, without
architecturally imposed boundaries, has made
programming the MC68000 — and subsequent
M68000 Family microprocessors — easy.

THE BEGINNING OF A FAMILY

The MC68000 was designed as the beginning
of a family of high-performance microproces-
sors. As such, many features were considered
at length in the design. Many of these, while
not practical for implementation in the initial
product, were anticipated in the architecture
so that they could be incorporated at a later
date. Also, space is available to allow addi-
tional enhancements in the future. Because of
this foresight, the MC68000 is already available
in a variety of new orientations.

Family Members At Present. The M68000 Fam-
ily consists of the original MC68000, and the
MC68008, the MC68010 and the MC68020. The
MC68008 is identical to the MC68000 except
that it has an 8-bit data bus and a 20-bit address
bus, for use in reduced-cost systems. The
MC68010 is an enhanced version of the
MC68000 which supports true virtual memory,
eliminating the need for the additional proces-
sors required by previous schemes. The
MC68020 is a complete 32-bit implementation
with many new instructions, an automatic co-
processor interface, and an on-chip instruction
cache which will allow the attainment of an 8
million-instructions-per-second execution rate.

Extensions. The chip implementation of all of
these processors has proven the advantage of
designing an architecture for future needs.
These microprocessors are upward object code
compatible for all user programs and data.
Each is a planned upward progression of the
original MC68000, with the MC68008 providing
the MC68000 power and versatility for 8-bit
systems. The extension capabilities of the
MC68000 were built in; they were not an
afterthought.

AN ARCHITECTURAL CONTRAST

The M68000 Microprocessor Family
and the
8086/iAPX 286

GENERAL FEATURES

Though a look at the general features of both
the M68000 Family and the 8086/iAPX 286 fam-
ily is rather extensive, some of the more vital
comparisons must be made.

The MC68000 introduced a totally new archi-
tecture. It was carefully thought out to aid the
modern programmer by providing the tools
with which to write the fastest programs with
the least amount of effort. The iAPX 286 is an
outgrowth of the 8086 (which was an out-
growth of the 8080), essentially providing the
same operations with some added function-
ality. That added functionality includes faster
execution and an on-chip memory manager.

Register Set Alternatives. The register set of
a microprocessor sets the theme for the entire
architecture and reflects the philosophies of
the instruction set. It is the most frequently
used area during program execution. Because
of its frequent use, the register set needs to be
easily accessable to allow streamlined pro-
gramming and fast program execution.

Instructions which require specific registers in
their operation may be more efficiently en-
coded (a chip implementation matter), but they
force the programmer into much more rigid
register use planning. Instructions which allow
the selection of any register for use as a con-
stant, variable, or pointer give the programmer
the freedom to select the most available or
appropriate register.

To make fast on-chip registers easy to use, they
must be available for use without restriction.
A truly general-purpose register set allows any
register to be used for any operand or pointer
to operands with any data or instruction.

All M68000 Family microprocessors have 16

general-purpose registers, each of which can
contain 32 bits of information. Half of these
registers are used to hold data, and the rest
are used as pointers to memory. Within these
categories, any of the eight registers may be
used in any instruction which may use a reg-
ister. No M68000 processor instruction re-
quires the use of a specific register. Most
M68000 instructions can use a data register as
an operand, or an address register to point to
an operand in memory. The programmer has
free choice which of the eight data or eight
address registers to use.

This means that if variables exist in registers
DO and D2-D5, the programmer may use D1 or
D6-D7 for values needed for another operation.
Both programmers and compilers may more
easily assign registers to use as they see fit.

Contrast the general purpose register set to a
register set which has architecturally-imposed
registers used for particular operations.

The problem with dedicated registers can be
demonstrated with the iAPX 286 and its ances-
tors. Intel architecture only allows one register,
the AX register, to be used to perform multi-
plies and divides. If a desired instruction re-
quires the use of this register and the AX reg-
ister has been recently used, the value in AX
must be saved in memory and a new value
placed in AX, even if that new value is already
in an adjacent register, say CX, for example.
After the desired instruction is executed, al-
though the result may be needed later, the new
result will have to be saved, probably in mem-
ory. Then the old value from register AX must
be reloaded for use in the next few instructions
and, finally, the new result will have to be
brought back in to the processor when it is
needed.

This overhead of constantly swapping fre-
quently used, dedicated registers significantly
burdens the programmer and slows down pro-
cessing, especially in compiler-generated code.
Not only does the iAPX 286 multiply and divide
require the exclusive use of the AX register,

but the unsigned multiply and both the signed
and unsigned divides do not even offer an im-
mediate addressing mode for the source op-
erand. Thus, extra instructions and time are
needed to load yet another register merely to
hold the source.

Register Scheme — General Purpose versus
Dedicated. In a general-purpose register scheme
with a large number of registers, there will
most likely be enough register space available
to perform an instruction series. Let’s say that
a particular routine needs five 16-bit registers
to hold data, two source pointers, a destination
pointer, and two table pointers. Using any
M68000 microprocessor, five data and five ad-
dress registers could be used with three of
each left over. No swapping of registers would
be necessary.

The dedicated registers of the iAPX 286 would
require at least four registers to be swapped

each time the use was changed, consuming
valuable execution time and code space as well
as causing a programming headache. Pro-
grammers readily say that they can always use
just one more on-chip register. This empha-
sizes the fact that the more general register
space available, the better.

The M68000 Family’s register set has eight 32-
bit data registers and eight 32-bit address reg-
isters, as shown in Figure 1. Address register
A7, although used by the processor as a stack
pointer for subroutine and exception process-
ing, is accessed and treated just the same as
all other address registers. Also, due to its use
as the stack pointer, a second register A7 exists
to give distinction between the supervisor (op-
erating system) stack and the user (application
programs) stack. There is also a program
counter and a status register.

31 16 15 8 7 0
Do
D1
D2
D3 Eight Data
D4 Registers
D5
D6
D7
31 16 15 0
A0
A1l
A2
A3 Seven Address
A4 Registers
A5
A6
a 0
r User Stack Pointer 1 a7 Two Stack
I - - | Pointers
b Supervisor Stack Pointer _
31 0
l Program Counter
15 8 0
System User Status
Byte Byte Register

Figure 1. M68000 Register Set

2

AX:
AL:

BX:

CX:

DX:

SP:

BP:

Sl:

DI:

iAPX 286 Register Utilization
7 0 7 0
AX | AH | AL |
7 0 7 0
BX | BH | BL |
7 0 7 0
cx | cH | cL |
7 0 7 0
DX | DH | DL |
15 0
sp | |
15 0
BP | |
15 0
st | |
15 0
oI | |
7 0
FLAGS

I:, FLAGS: Must be set before any string operation

“Eight 16-bit general purpose registers”” — iAPX 286 Data Sheet Claim

Multiply, divide, I/0, strings, no addresses
Same as AX and translate, decimal arithmetic,
ASCII arithmetic

Translate, base pointer when paired with
the data segment register.

Strings, loop counts, no addresses

Multiply, divide, I/0, no addresses

Stack, no addressing mode access

Frame pointer to access stack (when paired
with the stack segment register)

Source strings, indexing, addresses with
the data segment register.

Destination strings, indexing, addresses
with extra segment register only.

Figure 2. Intel iAPX 286 Register Set

The iAPX 286 has four 16-bit data registers
which double as eight 8-bit registers, as shown
in Figure 2. These registers have special pur-
poses required by the architecture, as noted.
Four 16-bit memory pointers are used as index
pointers and as the stack pointer. Each of these
registers also has particular requirements when
used with certain instructions. For instance, the
stack pointer is the only register which may be
automatically incremented or decremented
when data is accessed from it. In use, each of

these four registers often has a particular data
register paired with it.

To extend the addressing range of the iAPX
286, there are four segment registers: one each
to point to a 64-kilobyte code, data, stack and
extra segment. Again, during use, these reg-
isters are frequently paired with specific mem-
ory pointers by the architecture. The iAPX 286
also has a flag, instruction pointer and machine
status word register.

Source of the iAPX 286 Register Set Prob-
lem? — 8086. Part of the problem with the
iAPX 286 register set stems from its source
— the 8086. The register set of the 8086
was based on that of the 8080, which was
based on the original 8008. The 8080 is a
second generation 8-bit microprocessor,
usable but not very advanced from to-
day’s viewpoint. The concepts it em-
braced were not so much computer sci-
ence, but solutions for increasingly
complex logic functions which were pre-
viously built in medium scale integration.
Thus, while these first generation proces-
sors were useful, most computer archi-
tects and scientists scoffed at them.

To design the third generation of micro-
processors, such as the 8086, around the
8-bit 8080, might have been justifiable to
retain some compatibility. However, to
then extend that primitive architecture yet
one more time to an advanced 16-bit mi-
croprocessor, so compromises the archi-
tecture that the result is not practical.

This genealogic background of the iAPX
286 architecture is the underlying reason
why the future of upgradable products is
doomed.

As shown in Figure 2, the right-hand side of
the iIAPX 286 data sheet register set illustration
provides a list of the types of instructions
which require that register for the operation.
This list clearly points to the dedicated purpose
registers of the iAPX 286.

Contrast this with the use of any data register
or address register available in instructions for
M68000 Family microprocessors.

M68000 Family processors provide eight ad-
dress and eight data registers, all of which are
32-bits long and available for unrestricted al-
location. The iAPX 286 has complex register
use restrictions in which each register is forced
to be dedicated to a selected group of opera-
tions. Not even a single register is free for the
programmer to use at will. Segments on the
iAPX 286 must be overwritten, registers
swapped for proper setup, temporarily saved

and then restored because of the dedicated
register scheme.

Practically any 8086/iAPX 286 code can be ex-
amined to see the problems which plague a
programmer using the now-archaic Intel
architecture.

For example, let’s take a very primitive string
search. The EDN magazine benchmark study
has a very simple string search where a sub-
routine searches a major string for the match
of a minor string (Benchmark E). The Motorola
code for that benchmark uses only four work
registers (a mere quarter of its register set).
However, the Intel architecture not only forces
the use of its entire on-chip register set, but
also requires that two of the working variables
used in this short benchmark be saved and
restored on the stack due to insufficient reg-
ister work space! (See Appendix C). When triv-
ial functions cause such complications in an
architecture, the penalty for something of even
modest complexity leads to very nasty perfor-
mance problems and obese code generation.
It is also interesting to note that the Intel ar-
chitecture requires 41 lines of code to execute
this benchmark and the MC68000 only 18 lines.
Such instances of architectural limitations on
the 8086/iAPX 286 are the rule rather than the
exception, and several more examples given
later will underscore this gross inadequacy.

Not only does the iAPX 286 severely limit the
programmer to using only two data segment
registers, but they interact with the offset reg-
isters which use them, and often overrides
must be involved to properly match a segment
register with its proper offset. This matching
scheme is shown in Figure 3. It is hard to imag-
ine an assembly language programmer re-
membering the defaults of which segment reg-
ister match what base register and what possible
overrides optionally exist. Even worse, imag-
ine a compiler writer trying to implement these
restrictions in a code generator! Performance
is always going to be harshly limited by all of
the juggling of registers. This is proven time
and time again in independent benchmarks
(Appendix B).

The iAPX 286 programmer must assure that
proper segment registers are matched, and

Memory Default Alternate
References Segment Segment Offset

Instruction Fetch Ccs none P
Stack Operation SS none SP
Variable (except

below) DS CS,ES,SS [EA]
String Source DS CS,ES,SS Si
String Destination ES none DI
BP Used As Base

Register SS CS,DS,ES [EA]

Figure 3. iAPX 286 Segment Register Matching Scheme

this must be managed with only four registers
which are allowed to hold offset values, each
of which have additional special purpose de-
mands made on them. Registers BX, BP, S|,
and DI are the only offset registers allowed.
Register BX is heavily used for arithmetic/log-
ical operations and its contents destroyed
every time the translate instruction is used. The
BP register is almost always dedicated as a
frame pointer, so it is completely unavailable
for most programs and it usually defaults to
the stack segment (unless used as a double
index).

The S| and DI registers which can be used by
the programmer are overwritten whenever any
string operation is executed. The Sl and Dl reg-
isters use the DS segment register by default,
but, during string operations, the DI register
switches to the ES segment register. The facts
suggest frequent loading and unloading of
these four offset registers, coupled with the
required setup or overriding of the proper seg-
ment registers, heavily contribute to the poor
performance of the 8086/iAPX 286 architecture.
As dramatic proof of this, every Pascal pro-
gram we have seen has compiled with less
code generated on Motorola’s Pascal 2.3 com-
piler compared with Intel’s Pascal X125. (Refer
to Appendix A for more details.)

VIRTUAL MEMORY

It is imperative that any microprocessor in to-
day’s world support virtual memory capability.
Virtual memory allows programs to run in
what appears to be a large high-speed memory
address space much larger than the actual
physical memory present. This is accom-
plished by the capability of a microprocessor
to detect access to memory pages which are
not presently in the available memory pool.

When a virtual memory system detects such
a reference, it will, unknown to the program,
make resident the proper memory page or al-
locate a new page as required. The program
then continues, none the wiser.

Thus, virtual memory support provides four
valuable attributes:

1. A program may act as though it has as
much contiguous memory as it wishes for
any program or data segment. One ex-
ample would be for arithmetic arrays
which may be several megabytes in size.
Another quite common one is where a
compiler simply keeps its entire symbol
table in a memory segment and lets it
extend without limit as each new symbol
is entered. This latter capability com-
pletely obsoletes the burdensome effort
of creating, processing and managing
“spill"" files on direct access devices.

2. The programmer need not be aware of
this virtual memory capability and thus
need not be concerned with the proces-
sor's memory protection mechanism.

The ability to support demand paging.

4. When a memory access faults, the oper-
ating system can completely recover and
continue the program.

w

iAPX 286's Virtual Claims. The iAPX 286 com-
pletely lacks the first three attributes and only
partially posesses the fourth.

First of all, no program on the iAPX 286 can
ever ignore the crippling 64K segment limits
imposed by its segmented architecture. There
is absolutely no practical way around this se-
rious flaw due to the 16-bit offset limit restric-
tion. Programmers have no choice but to con-
fine data structures to within an individual 64K
data segment. Those that attempt to circum-
vent that severe limit are punished by handi-
caps of several times the lines and bytes of
code required. Worse yet, the execution time
slows down an order of magnitude because of
the massive amount of descriptor loading then
required. (An actual example is given later.)

The second attribute of true virtual memory is
that the programmer need have no idea of the

underlying memory management protection
mechanism, as the virtual facility operates in
a totally transparent manner. An MC68010/
68020 programmer codes programs without
any regard for the target system. The program
will execute properly regardless of whether the
target system is virtual machine, virtual dy-
namic paged, virtual segmented, real seg-
mented, or even has no MMU at all.

The iAPX 286, however, forces the program-
mer to tell the memory management unit
(MMU) via special instructions about each
memory segment just before it is referenced.
There is no way out. Only if each segment is
“banked” or “based’ can the data therein be
used. And, since there are only two segment
registers which can be used for data (and even
these are required for special purpose uses,
such as string instructions), there is a consid-
erable overhead for the loading and unloading
of segment descriptors in the iAPX 286
architecture.

For example, the EDN sort benchmark time for
the iAPX 286 just to do descriptor loading is
far longer than the complete execution time
for the entire MC68000 benchmark! (30.098
milliseconds for the iAPX 286 — 12 instructions
— versus 17.348 milliseconds for the entire
MC68000 benchmark.) Each descriptor load is
two microseconds on the iAPX 286.

Contrast the negative effects of forcing the pro-
grammer to constantly base segments to the
total freedom an M68000 programmer has
with no size restrictions or MMU descriptor
worries.

The third attribute of virtual memory is that of
supporting demand paging. The direction of
sophisticated microprocessor-based computer
systems is toward virtual memory configura-
tions based on demand paged physical mem-
ory. Paging” means the subdivision of phys-
ical memory into equally-sized blocks called
page frames. This division is invisible to tasks
running within the system. This is a desirable
method for memory allocation since entire
code or data segments do not need to be res-
ident in physical memory. Only those pages
currently being used by a task need to be as-
signed page frames.

The iAPX 286 segmented approach is entirely
incapable of supporting a demand page
environment.

The term “demand” means that a program
does not need to specify in advance what areas
of its local address space it requires. An access
to an address is interpreted by the system as
arequest to provide that memory. In a demand
paged system, pages are loaded into page
frames by the operating system when the pro-
gram addresses them.

The iAPX 286 segmented scheme has just the
reverse philosophy. The program must tell its
MMU in advance what areas are to be used.
Only a processor with real virtual memory ca-
pability, such as the MC68010 or MC68020, can
provide a demand paging enviroment. The
IAPX 286 MMU does not allow use of dynamic
paged memory management, by far the most
popular mode in use for large sophisticated
systems. This is another drawback of Intel’s
design where the programmer is burdened
with the MMU setup.

Demand paging allows system programmers
to choose the page size which is most appro-
priate to their design. Such pages are usually
2K or 4K bytes. The iAPX 286, on the other
hand, forces a complete segment to be made
resident, even if only a few bytes are required
by the program in execution. Thus, complete
segments up to 64K may have to be loaded yet
most of the memory never referenced. The
same iAPX 286 system can also suffer from the
other extreme of a large number of tiny seg-
ments causing excessive overhead due to the
loading of segment registers. This happens
due to the module concept of the iAPX 286
MMU, because there may be a large number
of small routines.

For example, high-level language runtime li-
braries are typically full of a large number of
small interdependent modules, and each, when
called, requires the basing of one or more seg-
ments on the iAPX 286 MMU. Since segment
basing requires from two to four microseconds
depending on memory speed, this quickly
adds up to a significant portion of the execu-
tion time accrued by a runtime system. Worse
is the fact that if many or even all of the rou-

tines are resident (never causing segment
faults) the segment load and checking over-
head is still the same!

With demand paging there is absolutly no
overhead for accessing loaded pages since
there are no MMU setup instructions in the
code. As can be seen in Appendix B, the iAPX
286 MMU philosophy causes excessive waste
in execution time; Intel’'s own benchmarks
prove this to be true. This is only the tip of the
iceberg, however. Even more severe inefficien-
cies are presented later in this document.

As for the fourth attribute of virtual memory,
once an iAPX 286 descriptor fault is detected
then the operating system may furnish the re-
quired segment and continue the program un-
detected. However, the problem here is that
only descriptor faults are detected AND NOT
MEMORY FAULTS.

The following paragraphs discuss the wide va-
riety of features a true virtual memory oper-
ating system can provide for its users, none of
which will work on the iAPX 286. This is be-
cause the iAPX 286 DOES NOT PROVIDE VIR-
TUAL MEMORY BUT ONLY VIRTUAL
SEGMENTS INSTEAD. One massive problem
with the Intel “solution” is that minor bus prob-
lems create catastrophic system crashes. If a
bus error occurs on the iAPX 286, there is no
action that can be taken other than to
TERMINATE THE AFFECTED PROGRAM IM-
MEDIATELY, EVEN IF IT IS THE OPERATING
SYSTEM. The iAPX 286 will not allow any pro-
gram hitting a bus fault to be continued.
System integrity and reliability go down the
tubes. Unfortunately, fault tolerance is next to
impossible to provide with Intel’s virtual seg-
ment memory scheme.

True Virtual Memory Facilities. True virtual
memory support provides many other features
beyond mere page fault recovery. The MC68010
and MC68020 allow an interrupted bus cycle
to be either rerun or simulated. This simulation
allows a new host of features which allow
pseudo accesses to be granted to tasks or
programs.

Since the National 16032 does not support bus
simulation but only instruction retry, and the
iIAPX 286 does not support virtual memory
faults at all, only the M68000 Family provides
for virtual machine and virtual 1/0 notions.

Virtual I/0 means that an operating system
may provide a complete set of psuedo (virtual)
peripherals for its tasks or even another op-
erating system. Virtual I/O is mandatory for the
realization of a Virtual Machine, since the entire
set of physical hardware may have to be sim-
ulated—even MMU control registers. Only the
M68000 Family allows the power of Virtual
Machine, which means that an M68000 system
can be built which can properly emulate the
environment of any other given M68000 system.

Virtual windows are like virtual I/0 except that
a block of memory is simulated instead of /0
control registers. This block of memory is ac-
tually physically owned by another entity, be
it a task or another system entirely.

For example, a simple parameter area can be
arranged between all tasks of a system such
that a write into that area by any one task will
“wake up”’ all other tasks. The creation of such
event or semaphore windows allows much
greater flexibility in the design and use of op-
erating system primitives. Another example
would be for the construction of parameter
windows which pass information to and from
a data-base system. In this way, virtual con-
nections can be allocated for given functions
almost without limit, and with access as easy
as performing a memory reference.

More Advantages with Motorola’s True Vir-
tual Memory. Creative use of the bus error re-
try facility allows for dramatic advances in fail-
safe systems, as well. For example, let's say
the operating system is updating a system ta-
ble and a write hard-fails due to a defective
memory location. Since the operating system
bus error handler would be given control by
an M68000 Family processor, it can then copy
the affected page from the defective memory
into a new page, while marking the old page
unusable. The write then could be successfully
continued and system integrity preserved.

The iAPX 286 however, would have no alter-

native but to halt or, at most, run in a crippled
state with the affected operating system func-
tion totally disabled. This usually results in a
complete system stall.

Since bus reads also can be restarted, this
means that the M68000 Family provides com-
plete fail-safe recoverability for any program
code loaded into the system. Being read-only,
program code can always be re-loaded from
its source and the memory fetch attempted
again. If that still fails, then another memory
page may be mapped into place and recovery
made as with the previous example.

Again, programs on the iAPX 286 would simply
be terminated without any other recourse.

The bottom line is that only with Motorola’s
M68000 Family can you have real mainframe
performance with real virtual memory and vir-
tual machine capabilities, fault tolerance, and
the added bonus of its superior instruction set
and linear address space.

DATA TYPES AND OPERATIONS

The variety of data types that a microprocessor
can inherently operate on exemplifies its flex-
ibility. The data types supported by M68000
processors and the iAPX 286 are shown in Fig-
ure 4. Generally, the more useful the data
types, the more universally applicable the
processor.

As shown in Figure 4, the M68000 has signif-
icantly more data type capability than the iAPX
286. The iAPX 286 needs to perform multiple
instruction sequences and loops to do what
native instructions offer on the M68000. The
iAPX 286 offers no memory-to-memory arith-
metic capability either.

32 Bits Since the Beginning. Certainly it has
been seen over the years that data sizes are
growing. As 4-bit processors gave way to 8-
bit, and 8-bit to 16-bit, so 16-bit processors will
bow to 32-bit processors. The key to each of
these is the maximum data size that can be
universally operated on. To be considered an
"advanced’” microprocessor today, a CPU
should be designed with its operations ex-
tended all the way to 32-bit data types. This is

Data Type M68000 iAPX 286
Bits X none
Bytes X X
Boolean Bytes X none
Strings X X*
ASCII Arithmetic none X*
Word Integer X X
Long Word Integer X DIV/MUL only*
8-Bit Binary Multiple
Precision X Register Only
16-Bit Binary Multiple
Precision X Register Only
32-Bit Binary Multiple
Precision X none
BCD Byte X only with register
and adjusts*
BCD String X none
Translate X Register Only*
16-Bit Blocks X X
32-Bit Blocks X none
16-Bit Pointer X none
32-Bit Pointer X X
Word Logical X X
Long Word Logical X none

* Each of these data types requires exclusive use of the AX
register.

Figure 4. Data Types Supported Directly by Instructions

particularly important to systems which antic-
ipate expansion in the future, as well as today’s
high performance machines. The MC68000, in
its original design, was made to perform arith-
metic and logical operations on 8-, 16-, and 32-
bits of data.

In many ways, 32-bit capability gives the
M68000 Family twice the capability of other 16-
bit microprocessors like the iAPX 286. The only
iAPX 286 instructions which handle 32-bit data
are multiplication and division. And they are
forced to use a single register pair (AX, DX)!
M68000 processors perform these operations
and many more. A comparison of the 32-bit
instructions in M68000 Family processors and
the iAPX 286 is given in Figure 5.

It is no wonder that Intel consistently avoids
providing benchmarks with 32-bit arithmetic.

Bit Manipulation. Individual bit manipulation
is very important for 1/0 operations, flag ma-
nipulations, resource allocation, and a host of
other applications. Early 8-bit microprocessors
typically had to perform bit manipulation in
registers, by using the logical instruction (AND,
OR, and Exclusive OR) on the appropriate bits.

M68000 Family iAPX 286
(any 32-bit (2 dedicated
data register) 16-bit registers)

Add ADD —
Add with carry ADDX —
And AND —
Arithmetic shift left ASL —
Arithmetic shift right ASR —
Bit test and change BCHG —_
Bit test and clear BCLR —
Bit test and set BSET —
Bit test BTST —
Clear CLR —
Compare CMmP —
Divide DIV DIV
Exclusive Or EOR —
Exchange EXG —
Sign Extend EXT CWD
Load Effective

Address LEA —
Logical Shift left LSL —
Logical Shift right LSR —
Move MOVE —
Move Multiple

Registers MOVEM —
Move Peripheral MOVEP —
Multiply MUL MUL
Negate NEG —
Negate with X bit NEGX —
Logical Not NOT —

| Logical Or OR —

Push Effective

Address PEA -
Rotate Right ROR —
Rotate Left ROL —
Rotate Right with X

bit RORX —
Rotate Left with X bit ROLX —
Subtract SUB —
Subtract with carry SUBX —
Test TST —_

Figure 5. 32-Bit Instruction Set Comparison

The M68000 Family has four bit manipulation
instructions that allow the testing, or testing
and setting, clearing or changing of any bit in
any data register or memory or I/O location.
Single bit manipulation in the M68000 is very
straightforward, easy to remember, and easy
to use.

The iAPX 286 follows the 8086's lead in bit
manipulation, only providing the ability to test
individual bits by the primitive ANDing of the
desired bit in a register after first using another
instruction just to load it in. A rather complex
routine would be necessary for an iAPX 286 to
duplicate an M68000 Family processor’s sim-
ple bit test and clear (BCLR) instruction. Simple

bit manipulation operations are requisite in
modern computer systems.

Many conditional branches are determined by
testing bit flags in memory. This is especially
true of most operating system code, and the
lack of a bit test instruction on the iAPX 286
causes significant speed degradation for sys-
tem routines.

Register and Addressing Mode Flexibility. The
flexibility of M68000 Family processors in reg-
isters and addressing modes is perhaps better
observed by looking at the operation codes (op
codes) of the two machines, including the ef-
fective address fields. An example of the ADD
instruction for M68000 Family processors and
the iIAPX 286 is illustrated in Figure 6. Note that
each requires essentially 16 bits for the op-
code, though the M68000 uses 16 additional
bits for one indexed addressing mode. There
are subtle differences in the exact operation of
each ADD instruction, but the most significant
can be seen when one looks at the variety of
options available to each machine’s ADD.

Each ADD instruction has three general op-
tions which must be settled to determine the
exact opcode: direction of operation, data size
and effective address (EA) calculation. Here is
where the differences in the two processors
stand out. There is little discrepancy in the di-
rection selection either to memory or to a reg-
ister. However, the M68000 allows not only
byte and word data sizes like the iAPX 286, but
also a 32-bit long word operand to be added
as well as an order of magnitude more mode
choices.

The real difference in programming each pro-
cessor becomes apparent when one inspects
the various combinations of accessing data
available, as shown in Figure 7. Here the ad-
ditional addressing modes as well as the ad-
ditional registers add up to a real advantage
with M68000 Family Processors. Totalling all
of the register combinations that may be in-
cluded in the address calculation, M68000 pro-
cessors are by far more flexible, with almost
7000 different ways of accessing the two dif-
ferent operands. The iAPX 286 can address 8-
and 16-bit data in only 1200 ways. The MC68020
has approximately 105, or one hundred thou-

M68000 Family

Processors Address Modes Data Types
ADD Dn to EA 8*(8+8+8+8+8+128+1) 3 types
ADD EA to Dn 8*(8+8+8+8+8+128+1+1+16+1) 3 types
ADD EA to An 8*(8+8+8+8+8+128+1+1+16+1) 3 types
ADD Immed to EA |8*(8+8+8+8+128+1) 3 types
ADD Quick to EA |8*(8+8+8+8+8+128+1) 3 types
6984 modes to select from (20952 total) 3 types

iAPX 286 Address Modes Data Types
ADD reg to EA 8*%(4+4+4+4+4+1)*3 2 types
ADD EA to reg 8*(4+4+4+4+4+1)*3 2 types
ADD Immed (4+4+4+4+4+1)*3 2 types
ADD to Ax (4+4+4+4+4+1)*3 2 types
INC EA (4+4+4+4+4+1)*3, 2 types
1134 modes to select from (2394 total) 2 types

Figure 6. Comparative Opcode Example for ADD Instruction

sand combinations, of addressing modes! Thus
it has 100 times the options of the iAPX 286.

No. of Register Options
MODE M68000 Family | iIAPX 286*

Data register 8 4>
Address register 8 4
Address register deferred 8 4
Address deferred

postincrement 8 unavailable
Address deferred

predecrement 8 unavailable
Address deferred with offset 8 4
Index deferred with offset 128 4
Absolute short N/A N/A
Absolute long N/A unavailable
Relative with offset N/A unavailable
Relative Index with offset 16 unavailable
Immediate N/A N/A

* Each access typically requires an implied segment register
as well.
** 4 more, if using 8-bit only.
N/A Not Applicable

Figure 7. Addressing Combinations Available for
Accessing Data

iAPX 286 Just Doesn’t Stack Up. Addressing
modes are very important to a programmer.
They provide the means for expressing to the
processor where to find the data. The more
means to express the location, the better the
chance the programmer will find just the way
that is best for each set of circumstances.

A comparison of the addressing modes avail-
able in all M68000 Family processors and the
iAPX 286 is shown in Figure 8. Each processor
allows direct access to its on-chip registers,
and has registers that can point to operands

10

in memory. Each chip supports immediate ad-
dressing for the use of constants. However,
M68000 Family processors have a pair of ex-
tremely useful addressing modes — postincre-
ment and predecrement, which are missing on
the Intel, Zilog, and National chips. These two
modes combine to allow the programmer to
easily:

scan through a sequence of data,

push data onto a programmer-built stack,
pull data from a programmer-built stack,
push data onto a programmer-built queue,
pull data from a programmer-built queue.

AN

The importance of these two addressing modes
is that they are available to virtually all instruc-
tions, and can use any of the eight address
registers, eliminating the need for specialized
stack instructions that only work on a dedi-
cated stack. These addressing modes allow
any M68000 instruction to operate on an
M68000’s system stack or on any number of
stacks the programmer wishes to build. Eight
of these may be immediately accessible at any
time. While the M68000 processors are not
what computer architects call stack machines,
they are very simply programmed as such by
always accessing operands on the stack.

The iAPX 286 has only two stack operations.
The POP and PUSH operations of the iAPX 286
place or remove data from the top of the stack
and they are limited to 16-bit values only.
These are the only data stack operations avail-
able, and they operate on one specific stack.
There is no other simple way of using another

M68000 Family
000 rrr Dn
001 rrr An
010 rrr (An)

011 rrr (An), An=An+incr
100 rrr (An), An=An—incr
see next

101 rrr (An)+d16

110 rrr (An) + (Xn)+d8

111 000 absolute16

111 001 absolute32

111 010 (PC)+d16

111 011 (PC)+(Xn)+d8

111 100 #lmmediate

Conditional Program Transfers
8-bit displacement
16-bit displacement

iAPX 286

reg mod=11
(SI/DI/BP/BX) mod =00
-no auto increment-
-no auto decrement-—
(SI/DI/BP/BX) + d8 mod=01
(SI/DI/BP/BX)+d16 mod=10
(BX/BP) + (SI/DI) + d8 mod=01
(BX/BP) +(SI/Dl) +d16 mod=10
absolute16 only mod =00 &

rfm=110
—-no 24-bit absolute !!
—-no IP relative—
-no IP relative—
#Immediate special

8-bit displacement
—no long jumps-—

Figure 8. Comparison of Available Addressing Modes

stack in the iIAPX 286. No other instruction will
operate on the SS:SP stack without manual
manipulation. Imagine a compiler which has
a parameter stack, operator parsing stack, and
an operation push down queue along with the
standard system stack executing on an iAPX
286. This would amount to the simulation of
three stacks with drastic performance handi-
caps and excessive compiler size.

M68000 processors take on such implemen-
tation requirements with ease, efficiency and
no overhead.

Another problem with stack operations in the
iAPX 286 is that, in order to access any data
that is buried in the stack, a frame pointer must
be set up. The frame pointer takes up another
iAPX 286 register (in fact, the most accessible
base register), further congesting the register
set.

Indexed and Absolute Addressing. Both archi-
tectures have indexed addressing modes that
allow the summing of one or two registers with
an offset. These very powerful addressing
modes are useful for indexing and referencing
data in complex tables or lists. The iAPX 286
provides for both 8- and 16-bit displacements,
while M68000 processors allow a 16- or 8-bit

1

displacement, depending on the addressing
mode. The general difference in these two is
the 8-bit offset makes slightly more dense
code.

M68000 processors allow indexing of 32-bit
values, something which is an order of mag-
nitude slower on the iAPX 286. See the para-
graphs on large data structures for a dramatic
example of how efficiently the M68000 pro-
cessors handle 32-bit indexes compared to
what is required on the iAPX 286 due to its
MMU overhead.

The M68000 Family allows any of the eight
address registers to be selected in the one-reg-
ister-with-offset mode, and any of the sixteen
data and address registers, as well as the eight
address registers in the two-register-with-off-
set index mode. This gives a total of 8 and 128
options as opposed to the 4 and 4 options
available to iAPX 286 programmers — a sig-
nificant difference, with less chance of a reg-
ister bottleneck with M68000 processors.

iAPX 286 Does Not Offer Absolute Addressing.
Due to its forced segmentation, the Intel ar-
chitecture mandates that all addresses have
two components: a selector and an offset. The
supposed code savings generated (which ap-

pears only in Intel’'s benchmarks and not in-
dependent benchmarks) are quite insignificant
to the extra amount of instruction code it takes
to handle the segments in many operations.

In fact, to make matters worse, the iIAPX 286
architecture has forced dedication of segment
registers for certain operations. For example,
if one wants to move a string from “HERE" to
“THERE” one must ensure that the “HERE"”
segment pointer is in one specific segment reg-
ister (DS) and that the segment pointer for

“THERE" is in another very specific segment
register (ES). The previous values in these seg-
ment registers are lost and must be restored
as later required.

The iAPX 286 further compounds the segment
overhead problem because it must do a com-
plete segment verification check every time a
segment register is loaded. To illustrate the
point, let's look at a simple memory-to-mem-
ory move in the MC68000, the MC68020, the
8086 and the iAPX 286:

Cycles
MC68000/MC68010 | MC68020 | 8086 |iAPX 286
* M68000 MOVE A WORD FROM HERE
TO THERE
MOVE.W HERE, THERE 28 8 — —
* JAPX 286/8086 MOVE A WORD FROM
HERE TO THERE
LDS SI,HEREPTR —_ — 22 21
LES DI, THERE - — 22 21
MOVS — — 18 9
28 8 62 51

As can be seen, both the iAPX 286 and the 8086
are significantly slower. However, one point to
mention is the fact that the iAPX 286 is running
with twice the speed memory as both the 8086

and MC68000. Since the iAPX 286 time will be
actually half when equal memory speeds are
considered, the real results are more like:

MC68000/MC68010

MC68020

8086 iAPX 286

28

8

62 102

The surprising conclusion is that segment
overhead causes substantially more problems
with the iAPX 286 than with even the 8086.
Note that the Intel architecture is not 32-bit,

like M68000 processors, but only 16 bits. Just
for interest we also give this benchmark, which
moves a long word:

Cycles
MC68000/MC68010 | MC68020 | 8086 iIAPX 286
* M68000 MOVE A WORD FROM HERE
TO THERE
MOVE.L HERE, THERE 36 8 — —
* jAPX 286/8086 MOVE A WORD FROM
HERE TO THERE
LDS SI,HEREPTR —_ — 22 21
LES DI,THERE - — 22 21
MOVS — — 18 9
MOVS — — 18 9
36 8 80 60

12

Again, when when we compare with equal
memory speeds:

MC68000/MC68010 MC68020 8086 | iAPX 286

36 8 80 120

Program Counter Variances. Program counter
relative addressing makes it easy for the M68000
Family programmer to write position-inde-
pendent object code. By being able to refer-
ence source data, relative to the location of the
instruction to use the data, one can access data
that is tabular, and known to be a specified
distance away. This way,if the instruction is in
ROM #17/18 and the data is in ROM #21/22 in
one system, those ROMs may be moved to
another system and execute identically so long
as the data ROMs remain 4 chips apart from
the instruction ROMs.

On the other hand, the iAPX 286 expressly for-
bids the moving of ROMs between systems!
This is because the MMU on the iAPX 286 re-
quires that all programs contain segment IDs
which only have meaning to one individual
operating system running on just a single hard-
ware system. Thus, yet another drawback to
Intel’s method of segmented memory man-
agement appears. This, like many of the others,
is due to the fact that the programmer has to
contend with the iAPX 286 MMU directly,
which leads to static non-changeable segment
constants directly in object code.

M68000 Family processors provide two modes
of program counter relative addressing: one
with an offset and one using any of the 16 index
registers plus an offset. These two modes al-
low the programmer to access data and still
have the object code relocatable, without
changing the code.

The iAPX 286 has no instruction pointer rela-
tive addressing modes.

Overall, M68000 Family microprocessors have
a greater quantity of more flexible and more
useful addressing modes than the iAPX 286.
This has the final advantage of making ac-
cessing data by instructions of M68000 pro-
cessors more simple, convenient and appli-

13

cable, beyond the more fundamental advantage
of a 32-bit linear address space over the re-
strictive segmented addressing of the iAPX
286.

INSTRUCTION SET

One of the most important considerations in
a microprocessor is the instruction set. From
an inspection of the instruction set, one can
quickly grasp the functionality of the proces-
sor. The more functional the instruction set,
the more useful the processor will be. Data
types and addressing modes are a significant
part of the instruction set. The exact operations
supported in a processor with specific instruc-
tions give a broader outlook on the capabilities
of the machine.

M68000 processors were designed with an en-
tirely new instruction set. No older micropro-
cessor was used as a mold from which the
instructions were chosen. However, all of the
experience Motorola has had with 8-bit micro-
processor products, and the experience of the
designers and users of popular minicompu-
ters, contributed directly to the concepts and
philosophies integrated into the M68000 Fam-
ily’s instruction set.

The instructions available in M68000 micro-
processors span many areas of programming,
from bit manipulation to high-level language
support. Powerful, yet flexible instructions
were included which perform data movement,
bit manipulation, BCD arithmetic, logical func-
tions, integer arithmetic, shift and rotate op-
erations, program control, and high-level lan-
guage and operating system support.

M68000 Family processors have a complete,
orthogonal set of instructions that form a core
of generally useful operations. Special purpose
operations which would appeal to only a small
group of users, which have limited utility or
which aid only one high-level language, were
avoided in favor of more and flexible general
operations.

Instruction execution was designed to be as
fast as possible, with the speed of execution
targeted to the frequency of use of each in-
struction. This was based on in-depth studies
on the static and dynamic use of instructions.

Such operations as register data movement
were streamlined to execute fastest, while ex-
clusive ORing to memory was given a lower
priority. This provides the optimum in software
efficiency with M68000 processors.

The 8-bit MC68008 shares the identical instruc-
tion set of the MC68000. The 16-bit virtual
memory MC68010 has an enhanced MC68000
instruction set, adding a handful of operations
that aid the programmer in new areas of mi-
croprocessing. Also, speed enhancements of
some of the original instructions have been
included. The 32-bit MC68020 adds a number
of new operations to the MC68010 instruction
repertoire. These instructions broaden the reach
of M68000 Family instructions even more. Bit-
field and coprocessor operations are typical of
these new instructions.

The instruction set of the iAPX 286 is essen-
tially that of the earlier 8086, with two major
additions. Some “new" instructions were added
which try to duplicate features already present
on the M68000 Family. Another group of in-
structions which was added was necessary for
the control of the memory management
scheme. No other real operations were added
to the iAPX 286 beyond the capability of the
8086.

The iAPX 286 is an 8086 with a memory man-
ager on-chip. No more!

Figure 9 illustrates the new iAPX 286 instruc-
tions and the M68000 Family instructions that
they duplicate. Note that the new Intel instruc-
tions are still limited to 16 bits.

There are some significant differences in the
instruction sets of the processors, and many
of these differences appear in the discussions
of other facets of them, such as addressing
modes. Here, some of the more significant dif-
ferences will be looked at.

The iAPX 286 retains all of the instructions of
the 8086. A couple of these were enhanced,
but most stayed the same. Most of the critical
shortcomings of the 8086 instruction set remain.

Stack Operation. As mentioned in the address-
ing mode discussion, the M68000 Family al-

14

iAPX 286 M68000 Family
POPA MOVEM - (SP),reg set
(regs not selectable) (specified registers)
(stack only) (any addressing mode)
PUSHA MOVEM reg set,(SP) +
(regs not selectable) (specified registers)
(stack only) (any addressing mode)
PUSH immed MOVE #immed,(SP) +
IMUL immed MULS #immed,Dn
Shifts immed Shifts #cnt,Dn
Rotates immed Rotates #cnt,Dn
ENTER LINK
LEAVE UNLINK
BOUND CHECK

Figure 9. New iAPX 286 Instructions and their M68000 Family
Equivalents

lows essentially all data operations to a stack,
including a simple addressing mode, to access
data deep in the stack (An+d16). Bytes, words
or long words of data may be placed on or
manipulated in a stack. M68000 microproces-
sors also have a move multiple register
(MOVEM) instruction which allows either all or
any subset of the general registers to be moved
to or from any stack or any data location. This
is very handy for context switches.

With two addressing modes (An)+, —(An) of
M68000 processors, stacks can be built any-
where. There are nine registers available at any
one time for use as stack pointers. This gives
the programmer complete freedom in working
with stack or queue data structures.

The iAPX 286 has only the POP and PUSH in-
structions of its 8086 ancestor with which to
work on the stack. They will only pull or push
a 16-bit quantity on the stack. Byte quantities
must be placed in a register and sign-extended
before they can be placed on the stack. There
is no real way of manipulating data on the
stack. There is an enhancement which allows
all of the registers to be popped or pushed,
but, if some subset of the registers is needed,
many PUSH and POP instructions must be run,
just as they were on the 8086.

Because there is only one stack, there is only
one stack pointer register on the iAPX 286. Due
to the necessary use of this register for sub-

routines and interrupts, its integrity must al-
ways be retained.

There is no real help given the programmer of
the iIAPX 286 in solving the stack problem. An
increment (INC) and decrement (DEC) instruc-
tion can be used to adjust memory pointers,
but even these have serious shortcomings.
They may only be incremented or decre-
mented by a value of one. Should the size of
the data being used be 16 bits, pointers must
be incremented twice to step to the next value.
Rather than two INC instructions being used,
the usual ““add immediate’ instruction would
be better. For source and destination pointers,
even this must be done twice.

M68000 processors’ addressing modes take
care of most stack operations. To ease the
manual manipulation of pointers and data by
incrementing, M68000 processors provide the
“add quick immediate” (ADDQ) and “‘subtract
quick immediate” (SUBQ) instructions. These
allow the programmer to increment or decre-
ment any data register, address register or
memory location by a value from one to eight.
This gives considerable flexibility and power
to the programmer when incrementing or dec-
rementing quantities — far better than the
iAPX 286.

Another problem with stack operation on the
iAPX 286 is the fact that the programmer has
to use a segment override each and every time
data is referenced on the stack. This is neces-
sary because there are no addressing modes
which address the stack.

String Manipulation. M68000 microproces-
sors, with auto increment and auto decrement
addressing modes, provide complex string
manipulations with ease. Almost any instruc-
tion can be used as a primitive in a string op-
eration. The decrement and branch on condi-
tion (DBcc) instruction is the key looping
instruction. When placed at the end of one or
a series of instructions, it will repeat the series
until a counter is exhausted or the desired (cc)
condition is met.

The DBcc instruction placed with just one other
instruction, such as the MOVE, allows many
simple string operations to be formed. Using
DBcc with a handful of other instructions builds
extremely powerful and flexible string or other
repeated functions. Without the auto incre-
ment and auto decrement addressing modes
of M68000 processors, these would not be pos-
sible. Some examples of string operations are
shown in Figure 10. Notice the varied use of
registers in the operations.

In the MC68010, some of these repeated op-
erations execute even faster. The MC68010
microprocessor enters a special microcode
routine when it fetches most single-word op-
codes followed immediately by a “DBcc” which
branches back to that opcode. This will latch
both instructions inside the processor, execut-
ing them as designed, without further re-fetch-
ing of opcodes. Only data fetches and writes
will take place as long as the processor remains
in the loop. This technique speeds up these
loops anywhere from 20% to 70%. It essentially
provides the equivalent of thousands of special
microcoded string operations.

MORE MOVE.L (A3) +,(Ab) +

DBEQ D3, MORE

ADDX.L —(A4),—(A1)
DBRA D2, MORE

SBCD —(A5),-(A0)
DBRA D3, MORE

MOVE.B (A2,D1),(A1) +
MOVE.B (A5) +,D1
DBEQ D6, MORE

MORE

MORE

MORE

block move D3 32-bit words
sum two multiprecision numbers
subtract two BCD digit strings

translate string A [A5] to string

B [A1] using table [A2] until a
null value is hit or end [count=D6]
is found

Figure 10. M68000 Family String Operations

15

The iAPX 286 has some repeatable instruction
capability, but, like its forerunner, the 8086, it
only provides a few “dedicated” string instruc-
tions. Other or complex string operations rev-
ert to relatively slow instruction streams. Block
moves, block fills, string comparisons, string
scans, and string input and output operations
are given special instructions. But they use
dedicated registers and are limited in flexibility.

Should an iAPX 286 programmer need to per-
form more complex, yet common, string op-
erations, the normal instructions must be used

M68000 8086/iAPX 286
(DBcc following:) (REP with:)
Add BCD ABCD —
Add binary ADD —_
Add with carry ADDX -
Logical AND AND —
Arithmetic shift ASL —
ASR —
Bit test BTST —
and change BCHG —
and clear BCLR —
and set BSET -
Bound check* CHK —
Clear CLR STOS
Compare CMP CMPS
Divide* DIV —_
Exclusive OR EOR —
Input MOVE INS
Link Stack* LINK —
Load element MOVE LODS
Logical Shift LSL —
LSR —
Move data MOVE MOVsS
Move Multiple reg* MOVEM _
Move Peripheral MOVEP —
Multiply* MUL —
Negate BCD NBCD _—
Negate NEG —
Negate with carry NEGX —
No Operation NOP -
Logical NOT NOT —
Logical OR OR —
Output MOVE OuUTS
Rotate ROL —_
ROR —
Rotate with carry ROLX —
RORX —
Scan CMP SCAS
Subtract BCD SBCD -
Subtract binary SuUB —
Subt with carry SUBX —_
Set conditionally* Scc —
Test and set TAS —_
Test TST _
Translate MOVE XLAT
Unlink* UNLK —

* Note: Limited utility.

Figure 11. String Operations Contrast

with a looping control (LOOPxx) instruction. A
comparison of the iAPX 286 operations which
duplicate M68000 functions shown previously
is shown in Figure 11.

Branching. Conditional branching in program-
ming is an all-important concept. With it, the
program can make decisions based on a set of
conditions. From those decisions, one of a
number of actions will subsequently take place.
This is a fundamental basis of computer pro-
gramming. The ability of a processor to make
these decisions, and the flexibility by which it
can take alternate action, directly influences its
utility.

M68000 microprocessors provide both condi-
tional branching and program jumps. The
jumps are unconditional and can use any ad-
dressing mode to describe the target routine.
Branches in an M68000 processor are condi-
tional and direct the processor to the next rou-
tine relative to the location of the present rou-
tine. Sixteen different conditions may be
specified as the qualifier to the branch, includ-
ing: always, greater than, less than, etc. The
target routine may be specified as being up to
+127 or —128 bytes or up to + or —32 kil-
obytes away. This 8- or 16-bit displacement
gives quite a bit of flexibility to the program-
mer. The MC68020 also allows a full 32-bit dis-
placement to the conditional branch instruc-
tions. This gives the programmer the entire
address range of an M68000 processor over
which to conditionally branch (16 million times
larger than the iAPX 286 branch range).

The iAPX 286 has a serious shortcoming in
program control operations. It only allows a
conditional jump to reach up to + 127 or — 128
bytes away. This short range promises to be
a constant reminder to the programmer of one
of the limits of the iIAPX 286. To perform any
significant task, iAPX 286 routines will easily
go over 50 instructions in length — the range
of the conditional branch. Multi-level program
branches will be necessary to compensate for
this.

Programmers and compilers generating iAPX
286 code must constantly handle branch con-
ditions by branching around a jump instruction
to get around the small branch range, as
follows:

AROUND
FALSECONDITION

Jec
JMP
AROUND

Notice that this forces the loss of position in-
dependent code, since JMPs allow only ab-
solute addresses on the iAPX 286. Compilers
have even further difficulties determining when
forward branches must generate the two-in-
struction sequence.

M68000 processors provide a series of boolean
byte functions that allow high-level languages
easy access to the result of boolean expres-
sions. The Scc instruction allows conditional
setting of a byte in a register or memory lo-
cation depending on condition codes. Thus,
branching decisions can be easily implemented.

The iAPX 286 has no such feature, and its ab-
sence of bit manipulation instructions guar-
antees inefficient branch testing on that part.

Memory-to-Memory Arithmetic. Memory-to-
memory arithmetic operations are yet another
set of instructions on M68000 processors which
are completely missing on the iAPX 286. Arith-
metic-intensive programs have a high per-
centage of memory-to-memory requirements,
such as when one array of values is added to
another array. Another use of memory-to-
memory architecture is for multiple precision
calculations. M68000 processors allow un-
bounded restrictions on the data size of ex-
tended precision operations. For example, a
20-digit BCD number can easily be subtracted
from another 20-digit BCD number in either
memory or registers.

The iAPX 286, without direct support for such
things, requires very time-consuming manip-
ulations since, not only are 32-bit operations
missing, but all values must be loaded into
registers and the results stored back. The fol-
lowing example shows the times for a single
pass through an extended precision operation.
The iAPX 286 must use a decrement so as not
to disturb the carry. The decrement only sub-
tracts one, so it must be coded twice. Also note
that the LODS requires both a dedicated source
index register (Sl) and a dedicated segment
register (DS), whereas any address registers
may be used on M68000 processors.

As usual, we not only find that M68000 code
is shorter and easier to understand, but sig-
nificantly faster as well.

The iAPX 286 Single Accumulator. The ancient
lineage of the iAPX 286 clearly shows up in the
many operations which can only be performed
in the AX register. This is a throwback to the
earliest days of microprocessors, indeed the
earliest days of computers, when only a single
accumulator was existent. It was entirely jus-
tifiable back then to provide one accumulator,
since the circuitry for just that element made
up a large portion of the computer and the
gating required to emulate multiple accumu-
lators was prohibitive.

Today, however, there is no excuse for such a
restriction. The iAPX 286 AX register serves as
a dedicated accumulator for such important
functions as multiply and divide. Each and
every multiply and divide must be done only
in this one 16-bit accumulator. Most of the
multiplies and divides do not even allow an
immediate operand.

M68000 Family iAPX 286
LOOP ADDX.L -(An),-(Am) 30 LOOP LODS WORD 5
DBRA Dn,LOOP 2 ADC [BX],AX 7
DEC BX 2
32 Cycles per Long Word DEC BX 2
LOOP LOOP 10
26 X 2 = 52 Cycles per Long Word
Results in microseconds:

MC68010 (12.6 MHz) 2.56 iAPX 286 (8.0 MHz) 6.50

MC68010+ MMU (10.0 MHz) 3.80 iAPX 286 (equal speed memories
MC68020 + PMMU (16.0 MHz) 1.06 200 ns) 9.75

17

As if this were not enough, there are a host of
other functions which also require the dedi-
cated use of the iAPX 286’s accumulator. All
I/0O operations, string operations, translates,
and decimal and ASCII arithmetic operations
must use the same accumulator. Another rea-
son why the AX accumulator is so overworked
is that there are some special instruction types
which work more efficiently with the AX ac-
cumulator than with the other registers. Com-
pares, adds, subtracts and logical operations
have special opcodes for more efficient access
to the AX accumulator than to the other reg-
isters. The result of all this is massive
congestion.

For example, just to compute a subscript ad-
dress during a sequence of arithmetic calcu-
lations means that the intermediate value in
the AX accumulator must always be saved and
restored over the subscript calculation.

In almost every instance, identical programs
coded on both the 8086/iAPX 286 and M68000
processors show significantly more lines and
bytes are required for the Intel processors. This
is due, in part, to the dedicated register scheme
of the Intel architecture.

Benchmarks such as the EDN Quicksort dra-
matically reveal the differences between the
stark simplicity of the M68000 code versus the
undecipherable machinations required by In-
tel. (See Appendicies D and E.) A single, quick
glance at the two versions is enough to convert
the most ardent skeptic. It is obvious that the
Intel programmers had to have put in several
times the effort over that required of M68000
programmers.

CODE COMPATIBILITY ACROSS A FAMILY

There is only one real justification for extend-
ing a processor’s architecture far beyond where
it was originally designed to go, with all of the
compromises that must be made. That is, if the
programs written on the original processor
must also run on the extended processors.

To do this, the programs must run exactly the
same. If they do not, then each piece of code
has to be individually examined to determine
what to modify so that it will perform the same
operation.

This is a significant chore, and can often con-

18

sume more time than would be needed to re-
write the same routine for another processor.
If just one condition code operates differently
for any number of instructions, the task of
manually verifying all code is required. If se-
guences of code will not execute the same on
the upgraded processor, these sequences must
be found and modified so that they will run.

Trying to retrofit an existing architecture with
code-compatible upgrades is rather difficult
unless the architecture was designed for such
upgrades. Even then, there is a limit to where
the compromises made for code compatibility
become too restrictive to really significantly
improve the overall utility of the instruction set.

The best opportunity for code compatible up-
grades is on products which, in their initial de-
sign, properly anticipated future needs in en-
hancements. Such a product will easily adapt
to the improvements without having to com-
promise in register selection, addressing ca-
pability, generality and special conditions.

M68000 FAMILY COMPATIBILITY

The M68000 Family of processors started with
the MC68000. The architecture for the MC68000
was an original design. Backward compatibility
to earlier 8-bit Motorola microprocessors was
traded away for the significantly improved per-
formance of advanced, general instructions.
Without being bound by older, more primitive
register combinations, addressing schemes
and spaces, and limited philosophies, the de-
signers of the M68000 Family developed a
completely new, advanced architecture. This
architecture was designed for future program-
ming needs, not the past.

In designing an architecture for future needs,
room was left for the enhancements to address
those needs. Not all operations that might be
desired could be implemented in a producible
microprocessor. The fundamental functions
were included, designed with allowance for
desirable enhancements which could be im-
plemented as technology permitted. Instruc-
tions were designed so that they were not lim-
ited in concept to their current form, but could
be easily enhanced to fulfill the requirements
of future programmers.

Instructions in the M68000 Family are in a very

flexible, fundamental form. To provide more
specific operations would limit both program-
mer duties today and the expansion of oper-
ations later as the needs arise. For instance,
the M68000 Family does not require specific
string instructions as its instruction set is so
flexible, so fast, that it outperforms the special
purpose instructions that are required of the
limited 8086/iAPX 286 architecture. Also, 32-bit
addressing was incorporated into M68000
Family architecture, even though only 24 bits
of it are presented in the MC68000.

Motorola is now seeing the fruits of some of
its earlier planning in the MC68010 and the
MC68020 microprocessors and in the wide in-
dustry acceptance of its M68000 Family.

As previously mentioned, designing a micro-
processor to be code compatible with an ear-
lier processor can be advantageous. However,
the extent to which the code is compatible be-
comes extremely important when weighing
the benefits of such compatibility. If there is
not 100% compatiblility, or too many restric-
tions are forced on the programmer to main-
tain compatibility, then it essentially makes the
processor less useful than a completely differ-
ent processor.

To analyze just how compatible one processor
is with a previous processor, you must ex-
amine the differences in the code and its ex-
ecution. In the analysis, it is important to note
the impact of the differences on a programmer.
To require a programmer to search every rou-
tine and assure that a particular condition code
is not used after a non-compatible instruction
is executed is not realistic.

Application programs are the most likely type
of programs that will need to be transferred
from an old processor to a new one. These
programs typically include the routines that
perform various tasks essential to the assigned
job of the processor. They include everything
from number crunching routines, data move-
ment and manipulation, and so on.

Utility and operating system routines are also
likely to be transported to the new processor.
Though these types of programs need to be
compatible, they are also typically subject to
and candidates for change to run more effi-
ciently on the new processor. This is because

19

the original equipment manufacturer (OEM)
frequently includes an operating system in the
end product, and the operating system is so
frequently executed.

An operating system is really overhead as far
as completing the assigned task is concerned.
Therefore, the quicker the operating system
performs its duty, the more efficient the system
is at handling its designed purpose. By incor-
porating some of the new features of a new
processor into an older operating system, ef-
ficiency is improved.

MC68000 to MC68008 Compatibility. The
MC68000 has a 100% code compatible 8-bit
counterpart, the MC68008. These processors
share the same instruction set, which is a basis
for the later microprocessors. All programs
written for the MC68000 will execute identi-
cally on the MC68008, and vice-versa. Every
operation is identical in each processor.

MC68000 to MC68010 Compatibility. The
MC68010 is an M68000 Family microprocessor
which does everything the MC68000 can do,
and more. In order to put additional features
in the MC68010, two compromises had to be
made that could potentially affect the execu-
tion of supervisor state programs (user pro-
grams are not affected). Except for these two
minor differences, all MC68000 code will run
identically on an MC68010. There are some
new instructions available on the MC68010,
which add capabilities that were not on the
MC68000.

MC68000 to MC68020 Compatibility. The
MC68020 microprocessor is an enhancement
of the MC68010. It contains the instruction set
of the MC68010 with significant additions. The
MC68020 also has a co-processor interface and
an on-chip instruction cache. The MC68020 is
truly a 32-bit microprocessor with:

32-bit Arithmetic Units 32-bit Registers
32-bit Logic Units 32-bit Data Bus
32-bit Address Bus 32-bit Data Types

Application Level Object Code Compatibility.
All MC68000 application (user) level object
code is guaranteed to be 100% compatible
when run on the MC68008, MC68010, MC68020
and all planned future M68000 processors.
This means that any media containing MC68000
application code will execute the prescribed

function on the MC68020 the same as if run on
the MC68000.

Other than two minor differences between the
MC68010 and the MC68000, there are no fur-
ther deviations from the execution of the orig-
inal instructions of the MC68000 at the super-
visor level; only additions. These two changes
have only minimal impact in all existing
MC68000 software.

MC68010 Change 1. The first change was made
to ease operation of the MC68010 as a virtual
processor. The last remaining unprivileged in-
struction (MOVE from SR), which allowed a
user-level program to view the supervisor-re-
stricted resources [i.e., supervisor stack pointer,
and the trace (T) bit supervisor (S) bit, and in-
terrupt (l2-lg) status bits], was made a privi-
leged instruction.

To allow this operation in the MC68010, a move
from condition code register (MOVE from CCR)
instruction was added. This instruction may be
used to replace the MOVE from SR instruction
in MC68000 code that needs to run at the user
level in an MC68010, since the T, S, and | bits
are not to be used.

Another way of making the MC68000 code run
with MOVE from SR instructions in the user
mode is simply to extend the privilege viola-
tion trap handler program with a small routine.

MC68010 Change 2. The other condition that
could vary the execution of MC68000 super-
visor code on an MC68010 deals with the han-
dling of exceptions (traps and interrupts).
While a problem should not arise, some ex-
ception handlers may perform unusual oper-
ations which need to be checked.

The possibility for incompatibility is due to the
fact that the MC68010 places one additional
word on the stack. Again, this change does not
affect user programs.

Affected supervisor-level programs need only
have a few instructions changed to run on an
MC68010. The modification is simply a matter
of increasing by two the displacement used in
the addressing mode when accessing the stack
data beyond the return address from the ex-
ception routine.

The two described conditions are the only dif-

20

ferences that could possibly alter the way an
MC68000 program executes on an MC68010.
One simple routine added in the operating sys-
tem will handle the first case, and good pro-
gramming practices or changing a few loca-
tions in some operating system routines will
handle the second case.

IAPX 286 Compatibility

The iAPX 286, as an outgrowth of the 8086/
8088, is promoted as being upward compatible
with those two processors. Indeed, it retains
most of the registers, addressing modes, and
instructions of the 8086. However, the exact
functionality of the instructions is not the same
in some cases. Worse, some of the concepts
introduced by the native mode of the iAPX 286
not only make it incompatible with the 8086,
but, should one use 8086 code in an iAPX 286
system, those new concepts cannot be used
without a comprehensive rewrite of the pro-
grams. Of course, this completely destroys the
intent of code compatibility.

Operational Modes. The iAPX 286 has two op-
erational modes: compatibility or real address
mode, and the native or protected address
mode. In the compatibility mode, the iAPX 286
is designed to run 8086 code exactly, with a
few new instructions added. The 8086 code
should run the same (if not faster) with a pos-
sibility of a difference where the 64K byte seg-
ment boundary limit is pressed.

Segment Wrap. In the 8086 it is perfectly legal
for a word of data or code to be accessed from
the offset $FFFF, getting the high byte from
$FFFF and the low byte from $0000 (wrapping
around in the segment rather than flagging a
overrun fault). In the iAPX 286, this specific
access would not be allowed, causing a special
trap to occur. The occasion for this should be
infrequent, and a mechanism to correct it is
provided in the trap.

Bus Locking. Another possibility for iAPX 286
and 8086 systems to not run the same is due
to the automatic assertion of the bus lock sig-
nal upon execution of the exchange (XCHG)
instruction in iIAPX 286 systems. This could
possibly cause a system to halt if it were not
decoded in hardware. In the 8086, the LOCK

prefix may precede any instruction. In the iAPX
286, the LOCK instruction is privileged and will
cause a trap if executed at a lower privilege
level. The operating system will have to em-
ulate the desired, bus-locked operation.

Protected Mode Operation. A significant prob-
lem with compatibility exists in the iAPX 286
when itis runin the native, or protected, mode.
This is the mode that the iAPX 286 is designed
to run in, affording the user all of the features
it contains.

Unfortunately, using most of these new fea-
tures so erodes the concepts on which the
original 8086 programs were written that they
will not run properly without alteration. The
problem is not that the code sequences will
not execute, but, by executing as written, they
will very likely violate the principles of the new
privilege and protection features.

Because the 8086 has no concept of execution
privilege levels, any program written for the
8086 may have free access of any resource. To
perform its assigned chore, an application pro-
gram might read some I/O ports, perform some
function, and then wish to save the data in a
file. In a native iAPX 286 system, a special I/0
handling routine must make all I/O accesses at
a designated /O privilege level. The applica-
tion program running at a lower level would
massage the data and then an operating sys-
tem task would store the data on disk at the
operating system privilege level.

8086 Application Program Compatibility. How
much of the original routines could be retained
in the iAPX 2867 The I/O handler would have
to be rewritten to run at the 1/0O level within the
task definition. The disk driver routines, which
will now be run by the operating system, must
be rewritten to run at the zero privilege level.
Perhaps the transfers to the disk /0O port will
be handled by a separate routine at the 1/O
level. The actual manipulation of the incoming
data can still be performed at the applications
program privilege level only after all of the
program transfers to the file and 1/O routines
have been redirected.

The end result is that a significant amount of
work will have to be done to modify even low-

21

level applications programs so that they will
run on the iAPX 286 in its protected mode. An
alternative to this would be to run the program
at a higher privilege level, but to do so would
completely destroy the system integrity that
the privilege levels were supposed to bring in.
Programs designed to run on an 8086 will run
on an iAPX 286 in the native mode only after
significant reworking by the programmer.

Segment Base Address. The fundamental
change in the utility of the segments in an iAPX
286 from the 8086 can cause significant prob-
lems for many routines. In the 8086, the seg-
ment registers directly established a 20-bit
base address from which to access code and
data. This base was exactly predictable to any
programmer in the 8086. In the iAPX 286, the
segment registers indirectly specify a 24-bit
base address. The writer of iAPX 286 code can
not reliably predict what that base may be be-
cause the operating system will establish it.
This is one source of problems with iAPX 286
code compatibility.

Because the 8086 has so few and dedicated
registers, and the general instructions are
somewhat limited, programmers frequently
make creative use of the resources they have.
Unfortunately, when an architecture is ex-
tended beyond where it was originally des-
tined, changes can defeat this creativity. This
is vividly illustrated in some of the Carnegie-
Mellon benchmarks that Intel programmers
assembled.

Carnegie-Mellon Benchmark Code. The Car-
negie-Mellon benchmark A, an /O interrupt
kernal, as coded for the 8086, used the CS seg-
ment register to locate some counters. While
this is not a good programming practice, it is
quite possible in the 8086. Unfortunately, the
iIAPX 286 is more restrictive, and, due to its
protection mechanisms, will not allow variable
data to reside within a code segment. Thus,
this fairly simple routine would not run on an
iAPX 286.

In the Carnegie-Mellon benchmark |, a Quick-
sort routine, Intel programmers once again
wrote code which will not run on the iAPX 286.
(See Appendix E.) Here, they used program-

ming practices which they explicitly character-
ized as dangerous. They used the DS and ES
segment registers as base registers to point to
individual records which were being sorted.
The resulting code will not run on the iAPX 286
in the native mode because it can not be pre-
dicted where the segment registers will be
pointing.

The Intel programmers developed the code for
these algorithms as any programmer would,
for space savings and speed. It points out one
of the serious architectural flaws in the 8086/
iAPX 286 — the lack of registers (the lack of
base registers in this particular algorithm). The
programmer is forced to resort to using seg-
ment registers for purposes other than what
they were designed. In the iIAPX 286 these re-
strictions grow tighter, resulting in a violation
of the purpose of the segment registers in the
memory management scheme. It also illus-
trates that the iAPX 286 has only two data seg-
ment registers, the DS and ES registers.

And so, once again, the 8086 and the iAPX 286
are not code compatible, even for application
programs.

Guide for an 8086 Code Writer. From another
approach, in an Intel-written application paper,
all of the things are noted that an 8086 code
writer must be aware of to assure the code will
run on the iAPX 286 as well. A person can only
wonder about what precautions will be needed
for future extentions to the architecture. This
paper begins, ““Due to the iAPX 286 enhance-
ments for memory protection and virtual ad-
dressing, some 8086 programs may not work
correctly when run on an iAPX 286."”

Would all this be necessary if the part were
code compatible? The cautions given are not
trivial. Some are listed in Figure 12.

Included in the paper are considerations for
high-level language compatibility. Many of
these cautions are required due to the new
privilege levels introduced by the iAPX 286 and
the new function of the segment registers.

However, there are other difficulties. Earlier
high-level languages allowed any procedure

22

Do not use overlapping segments.

Do not store temporary values in segment registers.

Avoid operations which may be restricted by the
iAPX286 to assure system integrity, low interrupt
latency, or low bus request latencies (i.e. ... STI,
CLI, HALT, and I/O instructions).

Write programs independent of operation changes
required by protection (e.g., XCHG asserting
LOCK, different single step priority, POPF and
IRET not changing the interrupt enable flag or I/0
privilege level, invisible interrupt table, or RET
affected by the nested task flag in the flag word.)

Do not rely on the value pushed onto the stack by
PUSH SP.

And for operating system upgrade:

To use the hardware task switch function or multiple
address spaces, the scheduler must change.

Code which accesses task context (e.g., register
state) must change.

Code which accesses the interrupt table must
change.Add pointer validation code to the
prologue of any procedure expecting pointers
from less trusted callers.

Structure the operating system to use the iAPX286
privilege hierarchy.

Validate pointers from all callers.

Figure 12. iAPX 286 Programming Guidelines for 8086
Compatibility (Abridged)

to be an interrupt procedure. In the iAPX 286,
no user level program may access the interrupt
table and therefore it will not load properly.
Pointer arithmetic in PL/M is common with all
of the segment registers, offsets and address-
ing mode rules. Few pointer arithmetic oper-
ations are compatible between the 8086 and
iAPX 286.

Operating System Compatibility. Operating
system compatibility between the 8086 and the
iAPX 286 is almost non-existent.

With the exception of running in the compat-
ibility mode, with almost none of the new fea-
tures of the iAPX 286, every 8086 operating
system will have to be entirely rewritten to be
used on the iIAPX 286. The new privilege levels
of the iAPX 286 will have to be assigned and
handled by the operating system and each ap-
plication program. To prevent invalid pointers
from being passed to the operating system by
lower level programs, the operating system
must verify that any pointer passed is valid.
Any code which accesses any of the vectors
for interrupts must be changed, since these
vectors can only be accessed by the operating
system.

These are just a few of the changes that must
take place in an 8086 operating system for it
to run on the iAPX 286. As a general rule, a
totally new operating system will have to be
written for the iAPX 286.

Additionally, most application level programs
will have to be rewritten to protect the various
operating system and |/O operations to their
proper privilege level.

Future Operating System Compatibility. To
make matters even worse, information re-
leased by Intel indicates that yet another com-
plete rewrite of major portions of iAPX 286
operating systems will be required to move up
to the iAPX 386. This is because the iAPX 386
will handle segment faults in an entirely dif-
ferent manner, in that segments will not be
allowed to be treated as complete entities for
residency decisions. Therefore, the operation
of loading a segment register will no longer be
sufficient to indicate what working set of mem-
ory needs to be made resident. As a result, the
iAPX 286 methods of main storage manage-
ment will no longer be appropriate.

Summary. All in all, the iAPX 286 is a micro-
processor which does use the same instruc-
tions as the 8086. It also has a few new instruc-
tions. But it has many very new concepts which
need to be incorporated into the existing soft-
ware. Including these new concepts into old
programs is a major undertaking.

Having had no foresight as to the future growth
of the 8086 family, programmers writing 8086
code had no reason to allow for such devel-
opments as privilege levels, segment integrity,
memory management, and even operating
system isolation. Therefore, when a new mi-
croprocessor demands that these concepts be-
come part of the original code, a significant
burden is placed on the programmer who must
upgrade it. -

Failure to make the required changes nullifies
any benefit of moving to the new part.

PRIVILEGE LEVEL PROTECTION

The Z8000 and the MC68000 were the first to
introduce the concept of privilege to micropro-

23

cessors. The MC68000 has two privilege levels:
supervisor and user. Operating system func-
tions typically take place at the supervisor
level, while application programs typically ex-
ecute at the user level. The supervisor level
has access to all of the resources of M68000
processors, and typically all external re-
sources. The user typically has access to al-
most all of the resources on an M68000 pro-
cessor but has restricted access to external
resources such as memory and |/0O.

The distinction of privilege allows the operat-
ing system to keep control of all processor and
even external functions, while protecting itself
and other code, data and users from the care-
less activities of a poorly written or unfriendly
application or user program. The MC68010 has
even gone one step farther in this privilege
scheme to secure the supervisor resources
from even being seen by the user. This facility
permits the MC68010 and the MC68020 to op-
erate as a virtual processors.

The two levels of privilege in M68000 Family
processors are more than sufficient for provid-
ing security to an advanced computer system.
All operating system functions and I/0 func-
tions can easily be implemented in a secure
manner, without burdening the programmer
with needless overhead. Various automatic
and explicit traps give control to the supervisor
each time the user attempts a questionable
operation. Notification of improper off-chip
accesses is simply enacted with either an in-
terrupt or the unique bus error (BERR) signal.

The iAPX 286 implements a four-level ring priv-
ilege structure. It is suggested that application
programs run at the lowest level (level 3), while
the operating system maintains the highest
level (level 0), much the same as on an M68000
processor. A floating 1/0 privilege level lets I/0
operations take place at any level the operating
system assigns. It is suggested by the manu-
facturer that the operating system be segre-
gated throughout the three highest privilege
levels based on the significance of each task.

Switching between programs running at dif-
ferent privilege levels is effected through com-
plex gates which are designed to assure the

security of the iAPX 286 system. Hardware as-
sures that each privilege level may have its
own set of registers and processor resources.
Violation of certain rules forces traps up to the
controlling operating system.

The most important thing to be said for the
iIAPX 286 ring architecture is that you have no
choice but to implement the ring mechanism
whether you like it or not.

Even worse, you must accept the segment
hangups which go along with the rest of the
architecture. There are some system imple-
menters who prefer hierarchical levels in their
architecture, though the vast majority do not.
The Intel philosophy is one of “take-it-or-leave-
it.” You use the iAPX 286 definition of a ring
architecture or you do not use memory man-
agement at all.

Motorola does not force any concept of mem-
ory management. You can use demand pag-
ing, demand segments, virtual versions of
each of these or no memory management at
all. And the best news is that absolutely NO
progamming changes are required by user
mode programs to implement or change over
from one to another, unlike the iAPX 286,
where absolutely all programs must have
MMU segment loading operations.

The MC68020 adds the concept of multiple ac-
cess levels to the M68000 Family. The access
concept not only provides automatic module
connection but also the expansion of up to 256
hierarchical levels without the cumbersome
segment limitations forced by the iAPX 286.

The hierarchical levels are a superset of ring
architecture with much more flexibility. For
example, finer gradations are supported which
allow concepts such as data abstraction to be
supported. The end result is that a system de-
signer can, with the MC68020, choose almost
any type of memory management classifica-
tion and, due to the flexible nature of the Mo-
torola architecture, implement specific cus-
tomizations as desired. For example, a classical
ring structure can be developed with ring ob-
jects of up to 4 billion bytes in size instead of
the restrictive 64K byte limits on the iAPX 286,

24

and with several times more levels than just
the four allowed by the Intel processor. On the
other hand, MC68020 hierarchical levels are
totally optional and do not extract any penal-
ties for those interested in implementing, say,
a classical virtual demand paging mechanism.

One could even combine the two and imple-
ment a demand paging ring structure!

The bottom line here is M68000 Family power
and flexibility versus the iAPX 286 philosophy
of rigidity and limitation.

MEMORY MANAGEMENT

There are many aspects of memory manage-
ment. There are many reasons for a system to
require its memory to be managed. The exact
concerns of the designer must be examined
before the technique of memory management
can be decided. Fixed schemes of memory
management which only fit a particular set of
criteria suffer the same fate as processors
which force the programmer into certain re-
strictions and practices — they are undesira-
ble, unpopular and fail.

Memory management can be required in a sys-
tem to control a number of things. Ideally, the
more the isolation between the memory man-
agement scheme and the programs and data
which the processor will operate on, the better.
The higher the level of program which must
have knowledge of the memory management
technique, the better. Ideally, only the highest
level of the operating system kernel — or even
a completely separate, intelligent memory
manager — even knows that there is some
form of memory management in use. That ker-
nel manages the memory according to the cho-
sen scheme.

Some computer systems, however, require
every program — whether operating system,
utility, library or application — to have knowl-
edge of the memory management scheme.
These programs have to obey certain rules of
the scheme, and have to provide certain infor-
mation to the manager based on each routine
to be run, resulting in excessive memory man-
agement overhead. This is undesirable and
unnecessary.

It is more typical in advanced computers for
the application-level programs to be written as
though they had free access to any resource
located anywhere within the address space of
the processor. Should the operating system
decide that it is dangerous for the lower level
application program to have access to a set of
resources, the operating system will make cer-
tain that all attempts to access those resources
will be blocked and only the operating system
may make them.

This is one of the typical duties of the memory
manager: to protect various memory spaces
from unauthorized users. Another purpose of
the memory manager is to translate addresses.

A microprocessor generates logical addresses,
based on internal address calculations asso-
ciated with instruction processing. These log-
ical addresses might not correspond to phys-
ical memory or |/O locations, due to hardware
constraints. The memory manager needs to
control which logical memory or I/O locations
correspond to actual physical locations, and
properly translate the logical addresses to
physical addresses.

The use of a smaller (or even larger) physical
memory space than the logical address space
is called “virtual memory.” The exact parti-
tioning of physical memory, and the algo-
rithms used, comprise the virtual memory
scheme. A variety of virtual memory tech-
niques exist and are popular. Each has positive
and negative aspects, and the correct virtual
memory technique for each system must be
selected.

A third form of memory repositioning, banking
or segmentation, is not so much a technique
of managing memory as it is a technique of
expanding memory. Banking and segmenta-
tion were initially introduced in computer de-
signs as a means of working around an other-
wise small address space. They allow a smaller
size address space to be duplicated a number
of times by categorizing each duplicate ad-
dress space by its purpose. This purpose may
be as broad as classification of program versus
data space, or as specific as data space no. 2
for user no. 3.

25

The advantage of bank or segment memory
schemes is that they allow more memory to
be accessed than the naked architecture will
allow. This is done by appending the bank or
segment address to the beginning of the ad-
dress. This requires no real change in the ex-
isting processor architecture — only additions
to the hardware and bank/segment control
routines.

While banking and segmenting expand the ad-
dressing range of a processor, and implemen-
tation is easy in the architecture, actual use of
a banked or segmented address space is quite
involved. The problem with banking and seg-
mentation has always been that of keeping
track of which bank or segment the program
or data needed is in. Not only is the program-
mer saddled with MMU loading instructions,
but the overhead for loading segment registers
(two to four microseconds for the iAPX 286) is
always present every time the program
executes.

As reasonable execution time is possible only
by keeping a small number of bank or segment
registers active, keeping those registers point-
ing at the most frequently used information is
quite a chore. Then, every time the information
needed by the processor cannot be found in
a current bank or segment register, the appro-
priate bank or segment must be swapped with
an existing register.

It doesn’t take too many of these register
swaps to turn into quite a lot of overhead. And,
as we have seen before, the iAPX 286 has only
two segment registers for data.

iAPX 286 Segments Limit Compatibility
with Today’s Systems. Just now being in-
troduced are single-user computer sys-
tems which routinely handle data struc-
tures of several megabytes in size. New
innovations such as the Smalltalk lan-
guage require the manipulation of huge
linear memory elements to offer the pow-
erful concepts they provide.

The iAPX 286, with its 64K segment limit
and lack of true virtual memory capability,
is entirely unfit to be used as a host mi-
croprocessor for such systems.

For example, with such advanced systems
a single item symbolized by an icon may
represent a complete collection of dispar-
ate entities such as text files, spreadsheet
data, graphic drawings, code package ele-
ments, and, most importantly, other icons
which themselves may contain such items.
Such a system treats that single icon as
a fully addressable block which may be
many megabytes in size. If an item is se-
lected (activated) from that icon, then it is
also addressed and accessed in like
manner.

This is why a huge linear address range,
as on M68000 processors, is so critical for
efficient execution of such objects. Break-
ing such items down into artificial seg-
ments of 64K on the iAPX 286 is just not
practical. The many items which, either as
single entities or as groups are larger than
64K, would create havoc with segment
loading and testing requirements, as the
iAPX 286 at every access into such an item
would be required to generate a complete
subroutine call to guarantee that the proper
segment is based in a segment register.
The iAPX 286 program cannot simply ac-

cess any address it wants, as can those on
an M68000 processor, but instead must
pass such an address to a subroutine to
determine which segment is the proper
one to base.

The Intel iIAPX 286 Preliminary User’s
Guide gives an illustration of what must
be done to access large data structures on
the iAPX 286. The code is so lengthy (58
bytes) that it must be incorporated as a
subroutine and usually will be passed a
descriptor since that results in shorter
code and due to the fact that there are not
enough registers on the iAPX 286 to pass
all the parameters required. The following
sample code shows the access required
to address a large array of four byte values
with a 32-bit index on the iAPX 286, the
MC68000 and the preliminary figures for
the MC68020. The iAPX 286 routine is out
of the Intel publication. Note that for the
Intel code to work, the operating system
must support the incrementing on seg-
ment identifications to address continu-
ous segments (something not offered by
Intel’s own operating system).

Large Array Access (iAPX 286, MC68000, MC68020)

MC68000/MC68010
MOVE.L Index,Dn
ASL.L #2,Dn
opcode offset(Dn,Base)

TIME (12.5 MHz) = 2.72 us

MC68020
MOVE.L Index,Dn
opcode offset(Dn,Base,Dn:2)

TIME (16 MHz) = 0.625 us

iAPX286
MOV BX,Descriptor
MOV AX,Index+2
MoV CX,Index
CALL RESOLVE
LDS SILX
opcode [S]

TIME (8 MHz) = 20.37 us

Bytes

o] INNA

Bytes

-] |h-h

Bytes

2] I-h
~ COoOPWHLLPW

Cycles
16
12
_6
34
Cycles
6
4
10
Cycles
2 Descriptor DW Structsize
5 DW Offset
5 DW SegAsize
10 DW SegA
22 X DD *-*
0
119 (RESOLVE)
163

* MANUAL (FIGURE 8-10)

CONTAINS

* k k k *k k xk

As can be seen, the inordinate amount of
segment handling adds an order of mag-
nitude overhead for accessing large data
structures such as the array.

In fact, the iAPX 286 is over 7 times slower
than the MC68000 or MC68010, and a

* RESOLVE IS ADAPTED FROM INTEL iAPX286 PRELIMINARY USER'S
* INPUT: DS:BX — DESCRIPTOR FOR ARRAY WHICH

WORD SIZE OF STRUCTURE
WORD 1ST SEGMENT OFFSET
WORD SIZE OF SEGMENT
WORD SEGMENT BASE ID
AX = HIGH WORD OF 32-BIT INDEX
CX = LOW WORD OF 32-BIT INDEX
OUTPUT: X + SEGMENT AND OFFSET POINTER TO ARRAY ELEMENT

RESOLVE MUL AX,[BX] HIGH X SIZE
MOV DLAX
MOV AX,CX
MUL AX,[BX] LOW X SIZE
ADD AX,[BX+2] +OFFSET
ADC DX,DI
JNZ NEW_SEG
CMP AX,[BX+4]
JAE NEW_SEG
MOV CX,[BX+6]
MOV X+2,CX
MOV XAX
RET
NEW_SEG DIV [BX+4]
ADD AX,[BX+6]
MOV X+2,AX
MOV X,DX
RET

+0
+2
+4
+6

Bytes Cycles

3 24

2 2

2 2 PATH1 = 125 CYCLES
3 24 PATH2 = 135 CYCLES
3 7 PATH3 = 99 CYCLES
2 2

2 11/3 AVG 119 CYCLES
3 7

2 11/3 49 BYTES

3 5

4 3

4 3

1 14

3 26

3 7

4 3

4 3

1 14

huge 32 times slower than the MC68020.
Even worse for the iAPX 286 is the fact
that only two data segments can be based
at any one time (and even these are re-
quired for other dedicated operations),
further aggravating the code and time
overhead.

Incrementing a Smalitalk or Graphics String
Pointer. To consider just a simple thing as
scanning a string in a Smalltalk or large graph-
ics environment requires unbelievable gym-
nastics on the iAPX 286, while the overhead of
the autoincrement addressing mode on the
M68000 processors is zero. In other words, any
M68000 processor is so powerful that it incre-
ments address registers by the respective data
type size in parallel with the instruction
execution.

Contrast this with what is required on the iAPX
286. First, we will assume that the operating
system is smart enough that it can assign con-
secutive segment identifications for contig-

27

uous large data structures. (This in itself re-
quires that massive extensions be added to
such things as language compilers, assem-
blers, linkage editors and dynamic memory
allocation within the operating system to sup-
port such a capability.)

iAPX 286 M68000 Processors
INC BX 2 Cycles (An)+ 0 Cycles
JNE LBL 16/4 Cycles Autoincrement
addressing mode
MOV DS,AX 2 Cycles
INC AX 2 Cycles
MOV DS,AX 20 Cycles
LBL
Result: 10 Bytes 18 or 30 Cycles 0 Bytes 0 Cycles

1 Extra Register No Extra Registers

The difficulty in implementing such a trivial
thing on the iAPX 286 doesn’t even begin to
give an indication of the more complex ma-
nipulations required when a complete scalar
item straddles a 64K boundary and must be
accessed by a high-level language. Several
pages of code are required to accomplish that
feat on the iAPX 286, and they are omitted
here.

Artificial Intelligence Research Cannot Use the
iAPX 286. As reported in the Wall Street Jour-
nal on August 19, 1982, page 19, researchers
say that the iAPX 286 cannot be used for ar-
tificial intelligence applications:

“. .. The 68010 is an improved version of
Motorola’s 68000 microprocessor, which is
forming the basis of dozens of new desktop
computers.

... International Business Machines Corp.
and Hewlett-Packard Co. recently began sell-
ing computers based on the 68000, too. At
least four groups of scientists — at Yale,
Massachusetts Institute of Technology, the
University of Utah and the Rand Corp. — are
at work on or say they have completed Lisp
dialects for the 68000.

“...An informal survey of the major centers
of artificial intelligence research found no
one trying to develop a Lisp dialect for the
microprocessors with which the Intel Corp.
competes against Motorola. Scientists sur-
veyed say Intel’s present circuit, the 8086,
can’t deal with enough information at one
time to be useful in major artificial intelli-
gence programs and they dislike the design
of the improved version [iAPX 286] due from
Intel soon.”

Large data structures and efficient use of point-
ers are absolutely critical for proper operations
in such environments. The fact that the iAPX
286 cannot handle virtual memory access
faults, but forces segment loading checks and
their associated overhead (shown earlier), re-
stricts its use to the 8-bit world of 64K address-
ing. Each segment register load on the iAPX
286 requires 20 clock cycles. And the iIAPX 286,
with its small and special purpose register set,
requires a massive amount of segment register
manipulation as shown in the EDN Quicksort

28

benchmark — where the entire MC68000 ex-
ecution time is faster than just two of the seg-
ment loading instructions for the iAPX 286 na-
tive mode version.

Dynamic Storage Areas and Sophisticated
Software Systems. Many benchmarks around
are extremely simple and do not really tax
the architecture of even the simplest 8-bit
microprocessor. However, real world com-
puter systems require the successful exe-
cution of large and sophisticated program
modules with their associated linkage. As a
result, many weaknesses are hidden and
only found after a system is fully
implemented.

Intel’s limited segment sizes have several
such side effects which need to be brought
to light. By exposing just a single example
here, it will be seen that the problems caused
are far from trivial, and it behooves anyone
investigating the use of various micropro-
cessors to ferret out just such anomalies
prior to selection.

A sophisticated system requires the inter-
action of tens or maybe even hundreds of
modules. Each module, when called, de-
mands access to new and unique dynamic
storage areas for such things as large local
variable structures and stacks for temporary
work areas, dynamic data allocation and
subroutine return linkage. Such dynamic
areas cannot be static (that is, allocated at
linkedit or module load time) as the module
may be called directly by itself, indirectly by
routines called by itself, or by a completely
different task. Dynamic areas are also re-
quired for recursive programmimg tech-
niques. In fact, most modern programming
languages—such as Ada, Pascal, and Lisp
— have all modules recursive as a matter of
language definition.

On any M68000 microprocessor, the matter
is simply and automatically handled via its
large linear address space.

As a routine is called, it merely allocates the
dynamic memory it requires on the current
stack and continues on its way. The powerful
LINK instruction allocates the fixed stack re-

quirements for local dynamic data items and
sets up any one of the address registers as a
frame pointer. Since each and every executing
module uses the stack dynamically, there is
never any wasted space or management over-
head (see Figure 13). The operating system can
easily assign an initial stack and then increase
it by a set amount whenever required as de-
tected by virtual memory faults. Motorola Pas-
cal, for example, has the main program allo-
cate all global data initially on the stack. Then,
as each function or subroutine gains control,
it simply uses the LINK instruction to allocate
its total requirements directly on the same
stack. At termination, the UNLK instruction
does the simple work of freeing the data.

Start of Stack
Global Data
Main Local/Dynamic
Temps
A Local/Dynamic
Temps
B Local/Dynamic
Temps

A’ Local/Dynamic
Temps]
Top of Stack

NOTE: All areas accessible with a single addressing mode (4
cycles.)

Figure 13. Dynamic Storage Allocation on M68000 Processors

The iAPX 286 has no obvious way of handling
dynamic areas, a problem to contend with in
the iAPX 286 runtime enviroment.

When the iAPX 286 ENTER instruction at-
tempts to extend the stack, it fails whenever
the total dynamic area in use by all modules
becomes greater than 64K. Thus, Intel's at-
tempt to include a few M68000-like instructions
in the iAPX 286 instruction set does nothing
but point up the inadequacy of the iAPX 286

29

architecture to support today’s sophisticated
requirements. Even worse is the fact that the
stack size limitation means that the local dy-
namic variables often will not fit into a single
64K segment, and thus some artificial means
must be developed for allocating and freeing
such storage. Complicating the problem for the
iAPX 286 is the fact that segment values cannot
be ““played around with”” as on the older 8086.

The end result of all this is that very cumber-
some methods must be employed to support
dynamic variables and stacks on Intel archi-
tectures. What takes a single instruction in a
module to allocate or free the stack and vari-
able space on any M68000 microprocessor,
takes entire subroutines on the iAPX 286. And
for dynamic memory segments to be effi-
ciently reused, these subroutines must be
called both before and after each module ex-
ecution, since the dynamic order of module
invocation cannot be predicted. Figure 14 gives
an indication of the extra descriptors and over-
head required for dynamic storage manage-
ment with the iAPX 286. And remember: each
descriptor load to reference any of these areas
is over two microseconds (assuming 80 nano-
second memories).

As if this were not enough, the iAPX 286 high-
level language runtime environment must often
interface with the iIAPX 286 operating system
via call gates, since the descriptors pointing to
blocks of memory segments can only be as-
signed and manipulated by higher priority pro-
tected routines. The total price exacted for such
heavy encumbrances represents at least sev-
eral orders of magnitude increase in processor
time, just to manage the simple task of dy-
namic stack/variable allocation.

This is the very same problem which caused
the Intel iIAPX 432 to execute a recent set of
benchmarks more than ten times slower than
the MC68000.

The following examples illustrate the code required for all dynamic memory management.

MC68000 Method

* ALLOCATE DYNAMIC AND LOCAL MEMORY
LINK #SIZE,An 16 Cycles

PROGRAM BODY

* FREE DYNAMIC AND LOCAL MEMORY
UNLNK An 12 Cycles

iAPX 286 Method

; ALLOCATE OUR OWN STACK FOR TEMPORARIES AND SUBROUTINE CALLS

CALL NEWSTACK Hundreds to Thousands of Cycles
; ALLOCATE LOCAL DATA STRUCTURE SEGMENT

MOV AX,SIZE 3 Cycles

CALL ALLOCSEG Hundreds to Thousands of Cycles

; REPEAT ABOVE FOR EACH LARGE STRUCTURE REQUIRED
PROGRAM BODY
; FREE LARGE STRUCTURES
MOV BX,DESCRIPTORADDRESS 7 Cycles
CALL FREESEG Hundreds to Thousands of Cycles
: REPEAT ABOVE FOR EACH STRUCTURE OBTAINED

: FREE DYNAMIC STACK AND RETURN TO CALLER

JMP FREESTACK Hundreds to Thousands of Cycles
. Segment
iobal
1 Variables
i Segment
| Descriptor ,Li t I Main Stack/Temps |
' Segments
[Descriptors Main Local
'-=. : Data Structures
1
| Segment
| Descriptor lL t Subroutine A
1 Stack/Temps
: Segments
[Descriptors | A'Local Data
—————] i Structures | l
I
: Segment
l Descriptor { f Subroutine B
1 Stack/Temps
i Segments
Descriptors B Local Data
| Structures
|
|
|
I Segment
| Descriptor lﬁ || Subroutine A’
| Stack/Temps
: Segments
I
|

| Descriptors HE A’ Local Data
Structures | l

' .
NOTE: Several instructions require over 2 microseconds to address a different
segment.

Figure 14.. Dynamic Storage on the iAPX286
30

Massive Descriptor Overhead for All iAPX 286
Native Mode Operating Systems. There are
many hidden pitfalls awaiting the operating
system programmer who is forced to use the
iAPX 286 method of MMU descriptor control,
besides the fact that most of his current op-
erating system will need substantial rewriting.
Problems abound, as shown in Intel’'s own
iAPX 286 Preliminary User’'s Manual.

One such example is that even before you build
a descriptor you must first address it to build
it. This entails the creation of yet another tem-
porary descriptor reserved for just such activ-
ities to allow access to the new one to be built.
Temporary descriptors are required even to
just examine another descriptor. The added
execution time overhead of such little nuances,
and there are many, comes as a grim discovery
for those who examine the iAPX 286 for their
operating system base.

I/O INTERRUPTS ON THE MC68000
AND THE iAPX 286

The following code shows the EDN benchmark
requirements for the iAPX 286 benchmark A.
The original code ““as published” will not work
on the iAPX 286 because the protected mode
will not allow code space to be written to as
was done on the 8086 (a decidedly uncom-
fortable incompatibility for Intel to acknowl-
edge). The earlier EDN code would receive a
protection exception 13 due to an access rights
violation.

The protected iAPX 286 environment allows
three ways to handle an interrupt. The first and
“fastest”” method is to have a single task sys-
tem which runs all program segments at the
same priority and allows the interrupt to be
taken also at the same priority. The second
method processes the interrupt at a higher
priority level (which would ordinarily be the
case) and also allows multiple tasks to be used.
For small, single-purpose multitasking sys-
tems, this would be the norm. The third method
is via a task switch. Since this third method is

31

quite inefficient, it would only be used for very
unique conditions where a complete high
priority task is required to process a special
case of infrequent interrupts.

M68000 Version. M68000 Family interrupt code
is simple and fast. Intel presents the same
benchmark in their “iAPX 186,286 BENCHMARK
REPORT" of October 1982. In order to make it
appear that the iAPX 286 is faster, Intel incor-
rectly claims that an interrupt handler on the
MC68000 must change MMU segment regis-
ters during interrupt processing.

The truth is that the Motorola MC68451 MMU
itself detects a change from user to supervisor
state and uses the supervisor descriptors au-
tomatically. Since the MC68451 does not have
64K limits on its descriptors, as does the iAPX
286, operating systems using the MC68000
typically permanently map their entire resident
operating system memory requirements with
just a few permanent descriptors. Thus, the
entire operating system runs with never once
causing a descriptor fault and incurring the
associated overhead. Contrast this with the
constant descriptor loading required of an
iAPX 286 operating system.

Another reason for simplicity of the MC68000
interrupt routine is its absolute address capa-
bility. Notice that the iAPX 286 must labori-
ously save registers and rebank its data seg-
ment to achieve pointer capability, something
freely available with a simple addressing mode
on the MC68000:

Cycles
*ENTRY 44
16 ADD #1,COUNTER INCREMENT COUNTER
20 RTE RETURN FROM
80 EXCEPTION

Fastest iAPX 286 Version. The fastest handler
is the same priority handler, and can only be
used in very primitive, single-task iAPX 286
systems. The handler must save at least one
of the interrupt routine’s segment and base

registers so that the interrupt counters can be properly based:

Cycles
* ENTRY 11
3 PUSH
3 PUSH
21 LDS
7 INC
20 POP
5 POP
32 IRET
132

Most Common iAPX 286 Version. Normally,
interrupts must be handled at a higher priority
than problem program code, and thus different
interrupt and return times come into play since
a different stack is now forced to be based by

Cycles
* ENTRY 79
3 PUSH
3 PUSH
21 LDS
7 INC
20 POP
5 POP
56 IRET
194

Task Switch iAPX 286 Version. The task chang-
ing would be rarely used. Only when a very
special and infrequent exception needs to trig-
ger a complete high priority task switch would

Cycles
* ENTRY 167
3 PUSH
3 PUSH
21 LDS
7 INC
20 POP
5 POP
170 IRET
397

s :SAVE INDEX REGISTER
DS ; AND SEGMENT REGISTER
SI,CNTPTR :BASE COUNTER
(s :INCREMENT IT
DS :RESTORE SEGMENT
sl : AND INDEX REGISTER
the protection scheme. The code itself remains
the same. However, the interrupt routine must
only reference the global descriptor table (GDT),
since any task may have been interrupted.
S :SAVE INDEX REGISTER
DS ; AND SEGMENT REGISTER
SI,CNTPTR :BASE COUNTER
(sh :INCREMENT IT
DS :RESTORE SEGMENT
sl : AND INDEX REGISTER
this come into play. However, any iAPX 286
operating system allowing programs to supply
direct interrupt handlers must use this method
to guarantee system integrity.
sl :SAVE INDEX REGISTER
DS : AND SEGMENT REGISTER
SI,CNTPTR :BASE COUNTER
(sh :INCREMENT IT
DS :RESTORE SEGMENT
sl : AND INDEX REGISTER

32

Summary. Intel claims (in Advanced Informa-
tion Book AFN-02060A) that cycle times will
average 5% more due to instruction fetch wait
from memory. Also, these times assume zero

wait states, which require at least 80-nanose-
cond memory. The following chart shows the
comparison of the two systems under a wide
variety of conditions:

Interrupt Increment and Return

MC68000 without MMU 12.5 MHz 6.4 microseconds
MC68000 with MMU 10.0 MHz 9.3 microseconds
8086 10.0 MHz 11.6 microseconds
iAPX 286 80 ns memory (same priority) 8.0 MHz 16.5 microseconds
iAPX 286 same memory speed (same priority) 8.0 MHz 24.7 microseconds
iAPX 286 80 ns memory (to other priority) 8.0 MHz 24.2 microseconds
iAPX 286 same memory speed (to other priority) 8.0 MHz 36.4 microseconds
iAPX 286 80 ns memory (task switch) 8.0 MHz 43.1 microseconds
iAPX 286 same memory speed (task switch) 8.0 MHz 64.6 microseconds

Notice that the 8086 beats the iAPX286.

Another important statistic is the longest in-
terrupt latency possible, from the generation
of an interrupt to the first instruction of the

MC68010 Cycles
DIVS.W d(An,m) 136
1/0 INTERRUPT 46

182

Finally, assuming that the iAPX286 does not
allow the use of task gate interrupts, worst case
timing is:

Cycles
Call task — gate 188
1/0 interrupt 81
269

Intel Architecture Foils Intel’'s Own Program-
mers. A prime example of the problems caused
by the 8086/iAPX 286 architectural weaknesses
is an examination of the code produced by
Intel’s top programmers for the EDN bench-
mark competition. The last benchmark of that
series (benchmark K) inverts a square bit ma-
trix of size seven by seven. That competition
was originally published in the April 1981 edi-
tion of EDN.

Intel’s time for that benchmark was 820 micro-
seconds for the 8086 versus 368 microseconds
for the MC68000. The Motorola version was a

interrupt handler. The worst case for both sys-
tems is:

iAPX 286 Cycles
CALL task _ gate 188
1/0 INTERRUPT (TASK GATE) 170
358

33

very simple one, where a virtual bit address
was created by shifting the byte address over
by three and appending the bit number thereto.

A second edition of the benchmarks was run
in EDN’s September 16th issue of the same
year, and Intel submitted a new version for
benchmark K. In it, they attempted to create a
virtual bit address just as Motorola had done.
However, they ran into one major problem:
their new benchmark would not work with the
vast majority of possible parameters since,
with only 16-bit registers, when they shifted
left by three they were throwing away the top
three bits of the bit array address. The MC68000,
with 32-bit registers, has no such loss of pre-
cision. For the Intel architecture, this meant
that parameters located within 7/8ths of the
address space would cause the routine to com-
pletely fail.

When Motorola contacted Intel about the flawed
benchmark, Intel responded that bit matrixes
located at such addresses were invalid to pass

to the subroutine. In other words, parameters
which fail are simply not valid parameters.
Such tunnel vision is a neat way to cover up
the problem, but the simple fact still remains
that the benchmark does not work.

Unfortunately, for users of the 8086/iAPX 286,
in the real world we cannot build a software
system and then loftily claim that anything
which makes it fail is invalid.

And, by the way, you can guess which version
Intel is now using to claim that the iIAPX 286
speed compares with the MC68000. One won-
ders about benchmarks which don’t work.

PACKAGING

Since not all applications are able to take ad-
vantage of a single package type, it is impor-
tant that components be available in packages
that fit a wide range of enviromental con-
straints. The MC68000 is currently available in
the following packages:

Dual-in-line ceramic 3.9 square inches —
standard package ("‘L" Suffix)

Dual-in-line plastic 3.9 square inches —
internal heat spreader (G’ Suffix)
Dual-in-line plastic 3.9 square inches —
lower cost version (“P" Suffix)

JEDEC type B — LCC 1.0 inch square —
socketable (“ZB" Suffix)

JEDEC type C — LCC 1.0 inch square —
solderable ('ZC" Suffix)

Pin Grid Array Package — 1.0 inch square
— both socketable and solderable (“R" Suffix)

Power Considerations. System designers, when
choosing microprocessors, should include worst
case power dissipation as an integral part of
their performance rating procedure. High power
dissipation requires effective and often costly
thermal management to achieve system per-
formance goals.

“Worst Case’ Calculations. The first step in
any determination of the impact of device
power is a “worst case’’ calculation of the de-
vice juction temperature (Tj) using data sheet
specifications. The specification for maximum
power dissipation, along with maximum am-

34

bient temperature, and worst case thermal re-
sistance (theta.ja), can be combined to derive
the worst case junction temperature. The equa-
tion below can be used to calculate this
temperature:

Tj = Ta + Pd * theta.ja
Additionally, some equation for derating power

dissipated as a function of temperature such
as:

Pd = K/ATj + 273), where Tj is the temper-
ature in degrees centigrade.

A “worst case’’ power dissipation analysis will
be presented for the following devices:

MC68000ZB — Type B socketed chip carrier
MC68000G — 64 lead Plastic DIP
iAPX 286 — Type A socketed chip carrier

MC68000ZB Calculation:

max power = 1.5WatTa = 0°C
max temp = 70°C
theta.ja = 50°C/W

Pd = 1.28 W at Ta = 70°C
Tj = 134°C

MC68000G Calculation:

max power = 1.5WatTa = 0°C
max temp = 70°C

theta.ja = 30°C/W

Pd = 1.25 W at Ta = 70°C

Tj = 108°C

iAPX 286 Calculation:
max current 600 ma at 25°C

max voltage = 5.5v

max power = 3.3WatTa = 25°C
max temp = 70°C

theta.ja = 50°C/W

Pd = 3.1 Wat Ta = 70°C

Tj

224°C

Note the junction temperature for the iAPX
286.

Conclusions. Now that the ““worst case’ ther-
mal analysis has been performed, how would
a system designer use the results to determine
the amount and cost of thermal management
(if required to achieve a safe upper limit for
Tj)? Traditionally, a safe upper limit for Tj has
been subjective, and related heavily to relia-
bility. A general guideline is that the junction
temperature should be 125°C for the “worst
case” thermal analysis. When the junction
temperature is higher, the reliability of the de-
vice decreases correspondingly.

All devices discussed here, except the
MC68000G,require some amount of thermal
management, ranging from very little for the
MC68000ZB to a great deal for the iAPX 286.
The type of thermal management usually em-
ployed is the addition of heat sinks to the pack-
ages, and the assurance that there is a source
of high-velocity air flow available to the heat
sinks.

The junction-to-case thermal resistance char-
acteristic (theta.jc) is useful in calculating the
junction temperature, assuming that thermal
management has effectively reduced the
theta.ca to zero, and has made theta.ja equal
to theta.jc. The JEDEC Type A socketed chip
carrier used for the iAPX 286 has a theta.jc of
13°C/W. This results in a junction temperature
of 108°C for the iAPX 286, which is the same
as for the MC68000G with no thermal man-
agement. The same amount of thermal man-
agement for the MC68000ZB would achieve a
theta.jc 17°C/W and a resulting junction tem-
perature of 91°C.

SUMMARY

The definition of a microprocessor’s architec-
ture involves many tradeoff decisions and im-
pacts in very important ways the speed, effi-
ciency and reliability of any computer system
based on that architecture.

The Motorola M68000 Family of microproces-
sors implements a clean and powerful 32-bit
architecture with general purpose registers
and orthogonal addressing modes. A break
with full compatibility to older 8-bit architec-
tures was necessary so that advanced con-
cepts could be introduced by the all-new 8/16/
32-bit M68000 Family. The result was a new

35

architecture which encompasses features re-
quired of today’s system solutions and those
for the rest of this decade and beyond, with
complete user object-code compatibility.

In contrast to M68000 architecture, the iAPX
286 is weighted down with the instruction set
of the much older 8086, with all of the cum-
bersome attributes associated with such an-
cient chip designs.

As a result, such crippling concepts as seg-
mented addressing and special purpose reg-
isters rule the inflexible philosophy of iAPX
architecture. These exact their harsh penalties
in a multitude of ways, including excessive
object code generation — which causes painful
complexities in the integration of large, intri-
cate software systems — and forcing at least
seven times slower-than-M68000 execution in
the accessing and addressing of large array
and data structures.

The decision to implement direct 16-megabyte
linear addressing was one of the greatest fac-
tors in the industry-wide acceptance of the
M68000 Family. Contrast this to the mere 64K-
byte segmented accesses of the iAPX 286. This
forces extra manipulations on programmers,
who must constantly attempt to contort their
way around the severe limitations of restrictive
registers and addressing modes.

The iAPX 286 does not even support virtual
memory, but only a virtual segment restart ca-
pability. Contrast this with the virtual I/0, vir-
tual machine and virtual window concepts
available with Motorola’s M68000 architecture.

The 32-bit architecture of M68000 Family mi-
croprocessors stands in stark contrast to the
16-bit segmented 8086/iAPX 286. Remarkable
differences appear in performance, implemen-
tations, ease-of-use, code and execution effi-
ciency between the two architectures when
they are applied to actual programming
environments.

In all important respects, the M68000 Family
is seen to be far superior to the antiquated
8086/iAPX 286 architecture and fulfills the
more sophisticated needs and requirements of
today’s demanding software systems and
methodologies.

APPENDIX A
MC68000 Pascal is 45% Faster than
iAPX 286 Pascal

Intel has recently claimed better performance
for the iAPX 286 over the MC68000 in bench-
mark publications.

However, what they fail to tell customers is that
the iAPX 286/8086 architecture is so inefficient
that the Pascal benchmarks show a whopping
45% more bytes of code must be fetched to
perform the exact same function.

The implications are obvious. Since the ma-
jority of bus cycles are fetching instructions
(about 80% on the average), the iAPX 286/8086
must fetch 45% more program code to com-
plete an equivalent function on the MC68000.
Thus, for a given memory speed, the MC68000
executes these benchmarks significantly faster
than the iAPX 286 possibly can because the
iAPX 286 must fetch SIGNIFICANTLY MORE
DATA (i.e., instructions.)

This analysis does not even begin to get into
the overhead which will be required for the
iAPX 286 native mode execution. The Pascal
library code size was not included in the sta-
tistics gathered and therefore there is no such
bias involved.

The much larger code size required is man-
dated by the inefficiencies of the Intel archi-
tecture, such as segment overhead, limited
number of registers and forced dedicated reg-
ister usage. These benchmarks will soon be
rerun on the even faster MC68000 Pascal com-
piler and the results will be even more
spectacular!

36

Berkeley Benchmark Series Size in Bytes

Benchmark | MC68000 | iAPX 286/8086 | Ratio Larger
Search 578 756 31%
Sieve 120 348 290%
Puzzle 1742 2301 32%
Acker 124 311 250%

151%
Average

The results are quite clear. The MC68000’s sig-
nificantly reduced instruction needs allow it to
spend more time completing a customer’s pro-
gram requests instead of wasting time decod-
ing what to do.

APPENDIX B

Independent Benchmarks Show
MC68000 Faster than iAPX 286

The following times for a wide variety of
Motorola and Intel microprocessors are for an
EDN benchmark study published in EDN mag-
azine April 1, 1981, and September 16, 1981.
The results show that the Motorola MC68000
without MMU beats the iAPX 286 in all cases
and, with the MC68451 MMU, betters the iAPX
286 in the majority of cases. Note that Intel’s
new iAPX 186 turns out to be slower overall
than the much older 8086 it is meant to replace,
and that the new iAPX 286 is only 38% faster
than the original 8086, even with significantly
faster memories.

Also of interest is the fact that the MMU on
board the iIAPX 286 causes so much interrupt
overhead that not only the old 8086 but the 8-
bit MC68008 outperform it on the first
benchmark.

The following code shows that there are not
enough registers on board the iAPX 286 mi-
croprocessor to accomplish even a simple sub-

0022
0023
0024
0023
0026
0028
002A

0028
0028
002¢C
002D
002F
0032

EDN BENCHMARKS

(1) (2) (3) (4) (5) (6)
MC68000L12 | MC68000+MMU MC68008 8086-10 iAPX 186 iAPX 286
A. 25.6 us 39.2 us 57.6 us 43.2 us 50.0 us 96.8 us
B. 259.2 us 393.6 us 573.6 us 396.0 us 446.3 us 357.3 us
E. 127.0 us 177.4 us 372.6 us 201.0 us 249.8 us 128.4 us
F. 55.4 us 82.5 us 116.1 us 1271 ps 158.3 us 97.9 us
H. 116.8 us 180.0 us 281.6 us 269.0 us 259.2 us 199.8 us
I 13.9 ms 214 ms 31.0 ms 38.3 ms 452 ms 36.1 ms
K. 289.1 us 418.7 us 555.6 us 938.5 us 724.7 ps 508.8 us

S0
52
31
FC
8a04
2BCB
41

F2

AE
7406
BFFFFF
EB1790

(1)
(2)

MC68000 at 12.5 megahertz, no wait states.
MC68000 with MC68451 MMU at 10 megahertz, one wait state.

(3) MC68008 8-bit microprocessor at 10 megahertz, no wait states.

(4) 8086-10 at 10 megahertz, no wait states.

(5) iAPX 186 at 8 megahertz, no wait states.

(6) iAPX 286 protected mode (MMU turned on) at 8 megahertz, no wait states.

A. |/O Interrupt: four interrupts, increment and return

B. I/O Interrupt; queue interrupts

E. String search

F. Bit test/set/reset

H. Linked list benchmark

. Quick sort

K. Bit matrix inversion

NOTE 1 All Motorola speeds available now as regular production. Intel 80186 (iAPX 186)
and 80286 (iAPX 286) 8 megahertz parts will be available when regular production
commences, according to the manufacturer.

NOTE 2 All MC68000 code the same. Some 8086 and 80186 code changed by Intel to allow

iAPX 286 protected mode execution.

APPENDIX C
iAPX 286 Substring Benchmark

string character search. Lines 93, 95, 102, and
103 save and restore the overworked S| and DI
registers.

1 THE BENCHMARK PRCOCEDURE

EDN DENCHMARK FOR 1APX 86
CHARACTER SEARCH

ASSUMPTIONS: 1 VALID DATA FOR SRCHLNGTH
AND MINLNGTH (SRCHLNGTH>MININGTH)
PARAMETERS ARE PASSED IN RECISTERS AS FOLLOWS:
ES:DI TABLE_PTR
DS:SI STR_PIR
cx TADLE_LNGTH
BX STR_LNGTH
3 THE LOCATION OF THE STRING IS RETURNED IN DI
4 WORKING REGISTERS (AX & DX) ARE PUSHED AND POPPED

o
N
n

) SAVE WORK RECISTERS
PUSH AX
PUSH DX
PUSH cx
cLD
mov

1 BAVE LENCTH

AL, [S1)]
sUB CX,BX
INC cx
)FIND MATCH TO FIRST CHARACTER

1LOAD FIRST CHAR
1 LENCTH DIFFERENCE
1 POSSIBLE SEARCH COUNT

TRYNXT:

REPNE SCASB 1 SCAN WHILE NOT EQUAL

P JUMP ON MATCH
1 SET NOT FOUND FLAGC
TEXIT

MATCHIL
DI, -1
DONE

vE
NOTFND: MOV
JHMP

1FIRST CHARACTER MATCH HAS BEEN FOUND
) COMPARE THE REST OF THE STRING

37

0033
0037
0038
003A
0038
003C
0030

003E
003F

0042
0044
0046

0048
0049

0048
004C

004D

ASSEMBLY COMPLETE.

88D1
s7
[:1:14:]
36
aF
F3
Ab

SE

8BCA
7404
E3E9?
EBEJ

SF
2BFA

SA
%8

c3

101
102
103
104
103
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

NO ERRORS POUND

HATCHi: MOV DX. CX
PUSH D1
MOV CcXx, BX
PUSH S1
DEC DI
REPE CMPSB

1 SAVE POSSIBLE SEARCH COUNT
1SAVE PLACE IN TABLE

1LOAD STR_LNGTH

i SAVE STR_PTR

JRETEST FIRST (IN CASE LEN=1)
1 COMPARE STRING

i DROP THROUGH IF THE STRING DOES NOT MATCH OR WHEN
1 CX=0 (THE ENTIRE STRING MATCHES)

POP Ss1

POP D1

mov €X, DX

JE FOUND

Jexz NOTFND

P TRYNXT
FOUND: POP DI

€uB DI, DX

1RESTORE RECISTERS

DONE POP DX
POP AX
RET
BNCHPROG ENDP
CODE ENDS
END

38

+RESTORE STR_PTR

1RESTORE PLACE IN TABLE

1 RESTORE POSSIBLE SEARCH COUNT
1 BTRING MATCHES

$END OF STRING, NO MATCH

1 TRY NEXT BYTE IN TABLE

1CET TABLE_LENGTH
JCOMPUTE PTR TO STR IN TABLE

JRETURN TO CALLING ROUTINE

ONIYVAWOD JNNILNOD A>(I)D3Y 41 14001 IHg
1YN03 31IHM d007 TdWO‘pBa aNga
(I)03¥-A FYVIWOD +(b¥) ‘+(Sv) g°dWD TdWD
H3INNOD d001=pa 8a’ T-N3TA3NE 1°IAOW
I 404 dw3l Sv GY’ZY 1°JAOW
T+I => 1 eV’ (ZV) NITRYLNI val
QH003¥ IN3YYUND ¥Od A <~ pY v’ (PV) A3N vi1 14001
(T+4)03Y¥ = (C£)X3F <- €¥ €V’ (TV) XIN+NITAYLNI val
(1)034 = (I)X3IF <~ ZV Y’ (pY) X3 Va1 LY¥0s
SLNIWNO¥Y TIVD - BAISHNDIY - dS SQY0D3Y «Wa 40 HIONIT - 9V .
SHYILNIOd XYOM - SV/pV SHILNIOd X3 - €V/2V .
371480S 0 AHOD3Y¥ LSV - TV 37134nS 40 QHOD3Y IBHII - @Y :3SN YILSIOAY «
d4SYHd 1y0S¥OINd .
ALdW3 MOVIS LHOS NUVW (ds)- T1°41D
MOVLIS NO dOL ANV ‘ILNNOD ‘XWWNA JAVS (ds)-‘1v/za/ea T °WIAOW
H3LYT ¥Od 9V NI 3NIVA d3ad 9v‘Td 1°3IAOW
SQ¥0034 W 40 3JZIS IVIOL ANIJ Ta‘vs 1°7151
4 = QHOO3Y 1SVT OL HILNIOd -> TV TV’'(7°0a’eV)NITAYINI- va1l
ay003d 1SV OL ¥YIALNIOd ILIVINDIVD 0a‘vs 1°1S1
HIAO SQHODIY J0 YILAWNN XdJOD 2a’ea 1°3AOW
SHALSIOAY T1IV JAVS (dS)-’'9v-@v/La-8a T°WIAOKW AOIND
INILOOYENS LUOSHIIND .
HLON3T X3 l1y0S L noda N3TAIA
aqyo03¥ NIHLIM X3N Ol 1dsddo € noda Xad
HLON31 Qy0d34 XHLINI JHOS 91 n03 N3ITAYING

dNILNOY SIHL HIAO LNIUYASNVHL JUV SUILSIOIY T1IV
J3l¥0S SI AVHYY VIVd LHO0S IHL :lndlno

AVHYY L¥0S JHL 4O SSIHAAV «D3H. - BY
LHOS NOIIY3ISNI YOJd QTOHSIHHL LWe - Td

S3LvNd3d SNOINVTIIIDSINW &

®

99¢ :S3LAg
L8 :S3ANIT

CE 8 ERXE XEEX EXREEREEEE S

LNNOD Q¥0J3¥ uN« - BQ :INdNI
INVHLNI3Y »
LNIANIdIANI NOILISOd «
JONVY SS3UAAVY SIALAGYOIW 91 & :SILNGINLLY
LyosAO1IN0
I YHVWHONIS NA3 @PPBIONW
Syd ldo

HOSIND 00083DIN B|0103I01

d XIdN3ddV

2329
04448096
aged
9008L
vhve
P1AAVISY
€0008361
€1PB63LY
€80083SYH

A {44
pyevL3aBY
1§ o4
6863
83800IEY
8863
8ove
d434L3sy

LOPBOROO
€0000000
810008000

pEoePoo0
ocopB0Ne
V000000
8tpPoNNe
92000000
cZo00009
319000000
Vigo0000
91P00000

v1000000
01000000
300080000
oppB8pB00
80000008
90000000
v0000000
00p00000

M ANMTNOS OO0

39

SQY0D3¥ W I¥NO3 ¥O MO39 S31Id8NS 1I¥ SV LHOS NOILHASNI OINI TIVd »

ALdW3 LON dI 1¥0S INNILNOD
ALdW3 SI MOVIS 4I IS3l
MOVLS WOHd ¥ ANV 1 IXIN dod
ON 41 HONVNE

JZISW => (L-d) JYVIWOD

ON JdI HONVYE

JZISW => (1-C) JUVIWOD

_ 1-C -> za

£-d -> 14

£ ->2za

4 -> 1a

(£) o3y .

anv .
(1) o3y .
dvMsS

ayod3d 30 ONINNIO3gE Ol 139 Ol X3y~
Jovis

LHOS JINNILNOD

3WVS FHL SAVLIS ¥ ‘T+L -> 1

AOVLS LYOS OLNO [3 ‘T HSNd
SLIWIT 37I4€9NS ¥IOUV]

OL ¥ 3 7 13S ‘¥3TIVWS 3114dns (1-r)
JHY0S JNNILNOD

GWVS JHL SAV1S 1 ‘T1-C -> d
SLIWIT 37149NS ¥IOHV]

Ol ¥ 3 71 13S ‘¥31IVWS 311ddns (r-y)
£ MOVLS

4 MOVLS

H3TIVWS SI (1-r) 4TI HONVYE

3771490S HITIVWS INIWHILIA

0S JI HONVHE

¢YITIVWNS 311d8NS (L-Y) ¢3ZISW => (r£-d)

dANILNOD
(1)o3y .
HLIM .
(r)oa3y .
dvMs

L =¢ I 41 HONVYg
L =<1

ONIYVAWOD JNNILNOD A<(r)D3Y¥ JI
¥n03 37T1IHM 4001

A-(C) D34 FUVYAWOD

¥3LNNOD d0071

£ 404 dW3l = SV

1-c =>r

qyod3d LNIHHND JO (A) X3 <~ pV

LHO0S
9a’ev
Iv/0v‘+(dS)
THIM3N
1d’9v
PUIMAN
za‘9v
za’ev
1a‘za
ca’‘ev
1a‘’1v
(ov) ‘ La-va
(ev) ‘ea-ea
La-va’ (ev)
€a-9a’ (ev)
EV/AINE

Ly0S
oV’ (€¥) NITAULNI
(ds)-‘ev/ev

LH0Ss
TV’ (EV) NITAYLNI-

(ds)-‘¢ev
(ds)-‘1v
TIOVILS
za‘ta
HMIN
1a‘’9v
NOILOJYIA

14001

(zv) xax-*La-va
(e¥) xa-‘€a-od
La-va’ (gv) xax-
€a-9a’ (zv) xay-
Ls1and

A AN A ')

24001

ZdWd'’ed

+(S¥) ‘+(pv)
8Q’ T-N3TAINE
SVY/EV

€V’ (EV) NITAYLNI-
v’ (8v) X3

and
T°JAOW
T WIAOHW
IHgG
T1°dWO
IHE
T°dWO
1°4ns
1°4ans
T°3IAONW
T1°3AONW
T°WIAOW
T°WIAOW
T WIAONW
T°WIAOW
1°490S

vud
va1l
T°WIAOW

vud
Yal

T°3AONW
1°IAON
S04
T°dWD
314
T°dWO
37114€0S

vid
T°WIAONW
T°WIAONW
T°WIAOW
T°WIAOKW

204

T°dWO
IHg
3Nga
g°dWO
T°3AOW
T°3A0OW
val

V3l

LSTAaNa

IXIN INIWHILIA MON ‘ANNOd 3T1149NS M3IN »

THTMAN
TIOVLS

BYIMIN
3dID3d «

CdWO

¢d001

09430099
8002
PPELIADY
8dz9
ascd
9029
agve
88v6
¢8Z6
aeve
682¢
pdpdeasy
Jd000€0a8d
8d0PEADY
4000084000
g8LSs

9609
a10083TY
p6P0LIBY

ove9
8d3393¢v

T E 14
6047
V@S9
18vd
8049
ascd

van9
adddpdeevasy
addadeeea3dsy
adddaedepadady
adaddeeevidy
9tr9

g0618a

2329
23448096
Jpdd

9008L

avve
8dadaaLy
€000836Y

8vepe0000
AL LT]
cvopenee
ove00000
36000000
06000000
Y6000000
86000000
96000000
v6800000
c6000000
38000000
V8000000
98000000
28000000
28000000

aLp00000
YLP00000
9L900000

vL000000
0L000000

39000000
0900008060
v9800000
89000000
990090000
v9000000

29000000
J5000000
95000000
pSP00000
vYvo00000
8y000000
9y000000
Yvo00000
svo00000
3£000000
Jt0P0P000
veEPpOB00
9€00P000
ceEponooe

P11
601
881
Lot
901
SHT
122
€01
(4' 2
191
881
66
86
L6
96
S6
ve
€6
c6
16
06
68
88
L8
98
S8
ve
£8
8
18
08
6L
8L
LL
9L
SL
L
€L
L
TL
8L
69
89
L9
99
S9
v9
€9
9

89
6S

40

and
¥3TIVO OL NiNLay SIH
SY3ILSIOIY IJYOLSaH 9V-PVY/LA-@d’+(dS) T °WIAOW
MOVIS JHOLSIY ANV IJIyd 9V NINN
LYISNI Y¥YVIANIT INNILNOD .LN0doo01’ 8a vyga JdIaN3
A -> (1-r)03y (pv) ‘SY/LA-SA T°WIAOW
dOOT INNILNOD (L) X3AN < (A)X3AN JI NId001 IHdg
IVN03 ITIHM 4001 CAdWD’ 1 anga
(£) X3¥-(A) X3 FYVYIWOD +(2V¥) ‘+(gV) g°dWD CAIWD
1d NI ¥3LNNOD dOO071 10’ T-N31X3N# 1°3dAOW
(C)A34 <- €V €Y’ (Tv) Aax Va1
(A) Z3X <~ 2V ZvY’ (ds) xax Va3l
+C = ¢ TV (TV¥) NITAYLNG Va1
(T-0) 034 IXAN <- pv Py’ IV T1°3JAON
dW3al -> (1-r)oay (bV¥) ‘vA-1a T °WIAOKW
(£)034 -> dW3l va-1a’(1v¥) T°WIAOW NIdOO1
(T-0)03Y4 <~ pv IWIUd PY/OY T °IAOW
(1+1)034 = (r)o3y <~ 1V TV’ (@V) N3TAHINS val
JUYAWOD X3M HOd MOVIS NO ANV (dsS) ‘La-Sa T°WIAOW
(1)o3ay -> A S¥/La-Sa’ (8%) 1°WIAOKW
(T+I)X3¥ => (I)X3X JI HONVHE JIaN3 s1g
IYN03 ITIHM 4001 TI11dWD‘1a aNga
(T+I) X3M=- (1) X3 FJUVIWOD +(2v) '+ (gv) d°dWd TIIdWD
JUVAIWOD ¥Od ¥ILNNOD d007 1d‘ T-N3TA3NE T°3IAONW
(T+I) X3 <~ €¥ €V’ (PV) XIA+NITAYLINI val
(I1)&ax <- gv Y’ (pv) Xad Va1
I-I =>1 oY’ (BV) NITAYLNI- V31l 1n0doo1
9 HONOYHL Z-N WOY¥d SIONVYH @d ea’‘zs ans
MOVLS NO VAUV AdOD A3N wAW IJIVOOTIIV NITAYLNI-#‘ 9V ANIT
qy0d3d 4Ol ANV INNOD Qu0D3¥ avo13d ovY/0a’+(dS) 1°WIAONW
L g
S3Id0D QHOD3Y IUVAWOD AIN wA. HOd AIAYISIY SI FOVHS MIVLS :3LON .
»
Y3INIOd IWVHd - 9V .
H3LSIOAY FAVS LAs - SV ¥
(1-0)034 - v SHALSIOAY IAVS Ae - LA/SA ¥
SHILSIOAY NHOM - EV/ZV SH3LSIO3AY dVMS - pa/ezda .
(£)03Y - TY Y¥ILSIO3IY dVMS ANY ¥ILNNOD - 14 »
(1)034 - @v TOYLNOD d007T - @9Q :3dSN HIALSIOIY &
L]
dSYHd LY0S NOILHYISNI »

--0 SYO¥Hd TVLOL
SL3V 8PTOG0AAP
d3d4L440v voT00000
353y 2O1P00P00
9444801S 34000000
8302vasy VIPOP000
0329 84000000
04446095 vd0p0000
490598 74000000
99CL 04000000
€0P063LY O3PP000AP
€00033Sh 83000008
01PB63EY v3IRPOBAP
6v8C 3000000
3190vA8y 300PA000
dTP0TAOY VAPPPOAP
8Y8Z 800AP0GAAD
010083EY vAPBOAAL
9390LABY 0APPPBAL
93PCHAOY J0000000
CEE9 VOPPROOP
04446095 90000000
4954 vO00P009o
98CL TOPBOGAO
€E10083LY 39000000
£00083SY VE00P000
0444831V 98000000
8vSS vae00000
93439530 PHPOAPPO
18108440y OVP00000

LA X2 XX 4

191
891
6ST
8ST
LST
9ST
SST
vST
£€ST
¢St
1S1
ST
6vI
8yt
Lrt
1A
1A
1448
(%A
[4 A0
I
eVt
6t T
8tT
LET
9t 1
SET
VET
€ET
[43%¢
1e1
PET
621
8¢t
Let
91
LTA
[X4 ¢
(XA
(44
1$4 !
['TAY
61T
811
L11
91T
ST1
1491
€Tt
(48

41

1 5 ysnd

xp ysnd

$433s51bad butyaom aneg xe ysnd

eade [edo] uf a3d 2a4 jag ¢ sp ysnd

eoae [ejo0] utr u 3a3g xd ysnd

PO4e [PI0] UY W 333G xq yend

hatrrqissadppe Joe3s ysifqejzsy ! dq ysnd
43 Joad 3408 323nbd

uof3lung 340S 30 334235 '
]

[31F8 p40d3u-dq) 4a3d ajhq nba eade dwa)y

W 403 ®auae aaeq ¢ c+u nba w

U 40y ®aue anes 2+43d 2a4 nba u

43d7 284 404 wau® aARg | (Oo1+dq) 43d paom nba 43d72a4

'
sdod pue saysnd yj3Im]

PIJ0ISIL PUP PAITICTIFU B4 SA3[QPJLeA [edo] bBugmorrojl ayy]
'

hay 3sabueg
118 284" paom
[

4430 nba
-] nba

‘pPaSN AJUOWWOD SUOTIPFABJIGQ® aufjag

‘s6@13 Y3 403 33daIxd Juasedsurdsy Ide saagzsibas (v

xq 3408 UOJ34asuf 03 jujod ssjgsueay w
sp $3J4a8 PU0IIJ4 JO 34e3s 03 -Jdjujod Jad
LR 00001 => N > O $3UdWald Jo aaqunu u

:s4a3spbad ey3 uy passed ause sJyajaweaed 4nogy

- m wm mm m m m mm o-

uo§3ouUng 34083§I§NP
]

91 nba 2118~ psodaq
€ nba 238330 hay
VA nba

y3buai T hay
t

$P402ad 403 SIN[eA [ed0] AUufjag 1
[

apod :sd auwnsse
,9p03, d11qnd juawbas apod

‘w3ep pue wyzjdsobie NQ3 @yl 404

1T y4ewyduaq 3say aweu

3dunas

0s 96 9000
14 2% 6000
8y 0¢ v000

44 31 €000
St 1¢ 2000
144 €5 1000
Ev €S 0000

124 0000

LE 10100~
9€ (13000
sE £12000
vE (1v000

&2 4400
8c 8000

<
42

vl otoo0
El €000
(4 4000

“~NDMeDONDO

3aNIT a0 201

(€3 :':24:)831TIN40Mm (1B/2/8)33°p 98¢ 'JqI0w Ty Qguwse :A@ A3WOAN] HINBWISSY
- _ r80 '1610W:14: NI @32v1d 37nA0W 12380
I WHVWHONIE 1S31 37NA0OW 40 A1EGWISSY 0 €A H3TAWIASSY 0¥IVK 86808/.808/9808 11-SISI

HOSHIIND 9808 |23
3 XIAN3ddV

(1)384 ' = no f => § 3408y
(1)204 > (F)I04 BLEYM BNUFJUO) ¢ dao1™} qf
(1)284 —~ (§)I34 aawdwo) ¢ qsdwd
Aoy ay3 ¢0 3884 3y) SUTWEXD BS[3 ! x®xd Aow
dooy™ f ef
doo1™§ qf
fay g0 ajhq 3sayy 3@ oo ¢ qsdwd
A 10¢ 339340 a8 1S ‘1P AOW
388340 hay'ys Aow
(F)234° = 8p ¢ dq 'sp ADW
I+ = § ¢ dq Jug
f 40 § Jey3je Bugpioy yd®3s uo paysnd sg rs
(1)raq- xp
hay g0 y-yjbuag e
(F)raa- xq
(¥)aea- dq
8 = SO

:aluwsn saysylay

‘a114QNSs ¢0 jaed 3ja1 J48A0 dixg

esday

:dooy™

- ®m mwmmmwmam o™

(1)284° = 88 ¢ ipsa AOw
1-43Buar hay e AOwW
:doo(” § J4aeysad
i =t 308 ¢ xp'dq Aow
5q Uy j+d = F wa04 ¢ g Juy
4830 409 4 BA®gG xq ysnd
aseq JI088 SAwg | dq ysnd
:dooy" J4e3n0
d @) edl 409 (Fed)204 => ()04 md (J-1)I04 1q 4
w4+ [=Cd I@30N xp 1

:abusn asjsybay

‘3408 UOTISBSUT BY] 04048Q 3408425Ad g0 doo] 48300

2408 UOJIJOBUT 04040q paddod 8q TITM ! xe ysnd
yoe3s eAms [‘a Ajdwe e3@dfpug [T XY) FY)]
(N)IO4L' = 4 | xq Jep

(T4N)19d ' = XQ ¢ X3 xq ppe

(1)3804° = ['Xp iqeap AOW

(1)364°' » xq ¢ xq 2u¥

(0)3ad° wdaog ! sprq AOW

9040 OABS 40 aseq Ajjjuepy ¢ ds ¢dq AOwW

se ysnd

11 ysnd

- o wmwmwmm -

vO1
cot
cot
101%

90LL
sd2L

3448

00€038
aa3s

oS
023€E

60€0
€gae

aase
J348
L6

1€00
0E00
34200
azoo

8200
6200
8200
9200
€200
1200
0coo
0200

3100
a100
a100
6100

£L100
9100

9100

43

(1)234° = 88 ‘xp

(F)204° = xq'sp :jaassy '
1
2dooy dems doot
J03ujod uUojIRUFIsSEp 40 dwnq 03Ny | ms03s
Te 2uy
433ujod #d4n0s dwng ¥s Juy
x®Cys) Byox
C¥Pp]: 80 ‘x@ Aow
:&2doo1 dems
[
‘(frrea ys3gm (1)284 abueyrze 3s4ajyé 3INg !
‘@AL® JIWIS SYJ UD SUDIITUTYEP BLF4qANS ARG [
!
dooy sepunadd anugguod 1 dooi" ¥ s4w@3sad dwl
-soo—llcio doog
Jo3uj0d uosjeugysap g0 deng ojny ms038
¥ Jug
Jajusod edunos dwng ¢ ¥s Juy
X@CE8] Byox
CIp) :se ‘xw Aow
:jdooy” dems
[
‘(F)28a y3Im (1)2e4 albueydrxy]
[
(F)204° = 8p ()84 = 80 dqse AOW
f =C v &% dwnp ¢ Zdooy dems sefl
xq+dq dwd
P40284 @ O SIS pPJOA 380 18 284 paoOm ‘LD Aow
¥S‘YP AQW
Sp40284 40 SBuwydrzd 40y sawdeay ¢ §s '8 408

‘3883 dems 409 § pue [sswdwo)

- osmdwod
1

Iqmsp ([)204"° = 8O 1-F = [:js0ssy
(1)204 ¢ (F)204 B13ym anugzuo) dooy™f el
(1)284 — (f)dea eswdwo) ¢ qsdwd oades
Aoy 8yy ¢40 3884 AYy3 3@ joOT es[3 | e xd AOW
fy aaedwo>d qf
doot™ f ef
Aoy ayy 40 83hq 3satys sy3 3@ joon ¢ qsdwd
A 40§ 38440 388 ¢ ¥ ‘¥P AOwW
338440 Aay ‘38 AOW
(F)294° = sp ¢ xqQ‘sp AOwW
1= = € 1 xq 20p
:daooy™
[
(F)2a4° = sp'x® 3dadxa #404308q s awes saajzstlay [

‘a1tdqns 4o 3ued 3ybya 4an0 dyyg [}

asct
Le1
9¢t
ect
L {2
[}
cel
et
oSt
6¥1
-1 4 ¢
v
9v1
44
144
col
L1 4
1§ 4
ort
[1
ecty
LEY
€Y
€ET
sET
EEl
Zet
et
Ot
6Z1
ect
L2t
921
ect
| 2
(3
zel
| £

61t
art

91t
CIt
riy
[3
cit

oty
601
a0t
401
901
€0¢

€0a892

coaave

€338

30€L
g3de
0080468
3788
94€€E

a3lse

€4
a%a8

902,
€dLL

34d8
00€038
aa3s
ar

L4900
9900
€900
¥200
£900
34€00
4600

asoo

acoo
v<00
6€00
8600
9€00
€€00
€600

1800

4v00
aroo
v¥00
8v¥00
9v00
9v00

¥¥00
£v00
zv00
0v00

3€00
J€00
8€00
6€00
9€00
¥£00
€E00
€E0O

44

[= 1 33e3g ¢ xp ysnd

...... ‘fTra‘1‘a sy Bujaspao yow3g
‘(o1Fdqns aebuwy oy3) ‘[-f 4o S3fwl[4eddn pue Jamol ysng

f-4 > -0 4y dwnp o f1 yde3s qf
f-a y3gm 1-F euwdwoy ¢ I8 Ep dwd

‘W uey) Jebiey suw y30q ‘3sebuwl S} 8[}4qNS YIFym seg
w a) F-a ¢y deunp o 4 meu 388 oqf
W y3Im f-yg adwdwo) [P AR) dwd

w C f-a 47 aeg ‘w ¢ 1-f

dooi " 4e3no dwf
§Ie3s wWadd | 390 ¢ up dod

*ccceredrpea sy Bujaspao yoe3g
‘§I8YS 8y3 WOo4y, 4 puw | je8

A3dews 4¢3 3408 uOFILESUT OQ ! 483007 pud 144
anteA 4 3se) xq‘xq 40
Ajdwe s} joE3s Byy ¢ seg xq dod

A3dwd 30u 4§ yo@3s By3 wWouy ajwd ['d4 JxOU 380
‘" =) S8ZJS A1FIQNS yjog

® C P-4 9% donp 1" mauTjes of
X3¢y dwd
w ¢ 1-F ¢3 denp w 3q 1f eof
[F T) dwd

1~ 40 8278 ayyyqns 11

-3 40 8138 a1}344qns 1)

w X3

(Frsaa- e

(d)284° xq

(1)20a " se‘xp

ofesn sajsylay

® e xd wexd Aow
Gujssesppe yd@3s ss0388Y ! dq dod
- = §p ¢ xpyp qns

f = §p X@yp AOwW

fed = 8 ¢ xe‘1s qns

4 @ XQ'FS xqQeyse Aow

dakq 330 xq dod

f anes ¢ xq'xe Aow

il ®pnTdut J0U Op S8TT4QNS (830N 3408 03 B[}4QNS JXBU BY)
843 uTwWaa3ep 03 F-d pur (- 40 SEIFS 1}¢qns ay3 esedwo)

- - - -

H YO
!

- - - -

- - - -

[¥4

ce

e80z2s
348€

909L
14@€

38483
ve

aive
aaao
ac

viLL
146

2042
é4dE

303vd8

vide
e4da8
odaz
€4de

€Ja8

3800

v800
8800

9800
€800

€800
1800

aL00
400

vL00
8400

€400
¥400
2400
0400
3900
9900
8900
6900

45

(3)304 sAwg ss ‘xp Aow
¥ 8Awg xq ysnd
P40384 @ 40 JUNOI PIOA 329 | a1ys 04 paom ‘@ now
umopT aAow
'
‘punoy s} [
(5)204 =C 40304 @ [JIUN JUSWELS AUO UMOP S[JIGNS BIFIUS BY) A0 [
[
(F+5)304 > (§)384 B(fym dooy ¢ dooy 3seg qf
(3+43)204 <~ (})284 sawdwo) ¢ qsdwd eded
Aay ¢0 3sas eujwexl | x®'xd Aow
umopT eAOwW ef
dooy" 300y qf
shey 40 se3hq 38 sswdwo) qsdwd
Xp'yP Aow
308¢¢0 UOIIVUFISAP PU® B8I4NOS o8 | EpyS AOwW
§ esaoysay ¢ xq Jep
(3+45)304° = 80 ¢ 5q'se AOwW
xq Juy
($)304° = 8p ¢ xqsp AOW
auop aqfl
O = § Bujhtdws (0)204° 409 388} ! 43d 204 'xq dwd
I -~ F = § waog ¢ xq Jep
:doay " 3sey
1
I+ = 5q 830N [
[
388540 Aag 308 ¢ 388440 Ray ‘up AOw
yabuagy Aey o8 ¢ 1-4y3busi " hay xe AQw
:doog T 3se[T 403us
(U)J84L° = § Wa04 | 43¢ 284 'xq ppe
y3buay Aesuw jeugbyao 300 ¢ urxq AOW
dway 40y edwds ejed0(lYy 8218 ps0d84 ‘ds qns
;48300 pus
'
‘ARU4® PUL0IBL BUFIUS Y UOC 3408 UOTILASUJ UR WIA0G4dd [
. [}
dooy 4a3n0 dwl
awes sujewed 4 | xp Jug
jof se 1 j08 ¢ xeup AOW
T meuT jas8
f =« 4 §o038 ¢ e ysnd
{ « 1 yoe3g 1« up ysnd
Heag F1 Y}
!
‘(O1Fdqns aaluey 0y3) ‘f-a jo 83wl 48ddn pue aemoy ysnd [
[
doo(4083n0 dwf
awes sujewea [¢ xq Jap
§1-f = 4 meu 388 1« x®nq AQW
4T meuT 308
f =« 4 §o038 1 e ysand

L9z
992
coz
vz
€92
c9Z
19c
(o124
1Y

8cZ
LeZ
9¢ce
(534
| 23
ECcZ
[
16z
oce
32
2] 24
Lye
9vZ
cvZ
1 4 2+
€eve
b4 2
12
ovZ
6EZ
ece
LEZ
Q€e
cES
vES
€ee
cees
| § 21
oee
62
Bze
Lec
922
| et
vee
ezz
cze
| L1
orce
61z
aic

91z
ci1z
vizc

£ao8

ooso8a

oocova
009084

v036ED

J03cas
0123€8

4349463
ogas

oS
1

343463
aaae

32000
al’oo0
v200
v200

8200
4200
9200
¥200

£200
0200
4400
aasoo
aa00
v8oo
8800
4800
€800

€800
0800
4v00
4v00

V00
&v00
6v00
9v00

ov0o
ovoo

as600
2600
v&00
v600
6600

8600

46

u eJoysay
43372084 sso0ysey

ea4® yIw3s uee()

} ss0ysey

Am (1=-F)d0a

y3uay sAow 309

040 Aavi0dway 40 Ssauppe 308
1O 8P UF A O SSaJppe 300
(3=F)384 03 3834990 38

A D> (F)res srIym enujjuo)
S884ppe asEq MOU 308

A y3tm (F)dea esswdwo)

Sugdeys sJdedwod 40 azxgs jeg
Rey (F)de4 40y 08490 sey 8
seJ4e dwe3l 40 ssasppe o8

A = §p:se

el =t

‘mou
(f)’e4 = (1=~F)d04
yaluay enow j0g

(3-F)204 40y 303440 8§ 19
(F)204 40y 308440 83 8

5qQ Uy § sswodeg -

(5)304 &= A
3UN03 sAOw 08

040 dway 40 ssasppe oG

] [¥] dod
1 sp dod
xe dod
xp dod
14} dod
11 dod
se dod
] dq ‘ds AOW
:auop
]
‘sd03sjlays e403884 ‘BUOP [TV]
[
dool 3sey 4e3us duwf
1 xq dod
1 ASAOW doa
' e nd AOw
] e840 dwey ‘38 e
] xp'sp Aow
U ¥PYP Jo1
‘
‘(F pro)rea 03 A Ado) [
]
] doa 1T umop T aAow qf
Q'SP AOwW
[} 1q‘se AOW
[qsdwd aded
] y3Buey hay ' AW
] 208440 Aay ‘3o ppe@
1 308440 ABjemaur dwey 'yp [T}
' zp 'se ACW
' xq Jup
‘
(3+0)204 409 3883490 8§ I8 030N [
[
[ASAOW dod
] x®‘xd AOW
' P'tP 408
[81387 p4a0d04 ‘}S AOw
:doo(" umapTeAcw
[
SSelp 34888y]
‘(1=F)204"° = 8p = s a3 [
1
[} 1q 88 AO®
1 ASAOW dou
(] E®@ ‘%) AQW
1L KAL) Jo08
[vase dway 'yp eat
5p 'se AOW

alc
L1E
91cE
cie
viE
€le
cie
1€
ole
60E
a0t
40€
90€
€0E
| {+]>

€oe
coe
10€

662
862
L62
962
c6Z
| 2.1
€62

T6Z
162
062
682
21271
482
96z
(4274
| {31

eez
zaz
18z
oge
&L2
8Lz
L2
e
(Y24
| 72-
(2

cLeE
e
oce
692Z
a9t

eV

€4
aJae
44€€
000134

otl10
J010

3010
aoto
2010
8010
vo1l0
8010
8010

9010
€010
$010
€010
1010
3400
9400
v400

8400
9400
¥400
€400
£400
4300
2300
6300
4300
9300

€300
¥300
€300
0300
aaoo

aaoo

aaoo
vaoo

4000
€400
2400
0goo

47

® as0880y |

dpue

dq
'q

328feg
3408 gognd
LY I
dod
dod

I+ ¥Z€
E£Z€
cee

8 €1t
as tiio
ac tito

48

NOTES

ALABAMA, Huntsville

ARIZONA, Phoenix .

ARIZONA, Phoenix
(General Motors Group)

CALIFORNIA, Encino/
Sherman Oaks

CALIFORNIA, Orange
(Orange Excn) .
(LA Exch.)
CALIFOHNIA San Dlego
CALIFORNIA, San Jose

COLORADO, Colorado Springs - -
ver

COLORADO, Den .
CONNECTICUT, New Haven/

Hamden .
FLORIDA, Pompano ‘Beach/

Ft. Lauderdale
FLORIDA, Casselber!y/Mal(land
FLORIDA, St. Petersburg
GEORGIA, Atlanta

(
ILLINOIS, Chlcago/Schaumburg

INDIANA, Fort Wayne
INDIANA, Indianapolis
INDIANA, Kokomo ..
1OWA, Cedar Rapids
KANSAS, Kansas Cnty/Mnssnon
MASSACHUSETTS Berlin ...
MASSACHUSETTS, Burlington
MICHIGAN, Detroit/Westland .
MINNESOTA, Minneapolis

MOTOROLA Semiconductor Products Inc.

MOTOROLA SEMICONDUCTOR SALES OFFICES

MOTOROLA SEMICONDUCTOR
AMERICAS DISTRICT OFFICES

. (205)830-1050

(602)244-7100

. (602)244-7125
- (213)986-6850

(213)872-1505

.. (714)634-2844
. (213)445-5585

(303)599-7404
(303)773-6800

- (203)281-0771
. (305)491-8141

(313)261-6200
(612)545-0251

MISSOURI, St. Louis ...

NEW JERSEY, River Edge

NEW YORK, Poughkeepsie/
Fishkill .

NEW YORK, Long Island/
Hauppauge

NEW YORK, Pmslord

YORK, Syr

NORTH CAROLINA Ra)e|gh

OHIO, Cleveland ...

OHIO, Dayton

OHI0, Columbus/
Worthington .

OKLAHOMA, Tulsa .

OREGON, Portland .

PENNSYLVANIA, Phlladelpma/
Horsham . .

TENNESSEE, Knoxville
TEXAS, Austin ce

TEXAS, Dallas

TEXAS, Houston

UTAH, Salt Lake City .

VIRGINIA, Charlottesvi o

WASHINGTON, Bellevue
Seattle Acces:

WASHINGTON DC/MARVLAND
Hyattsville ...

WISCONSIN, Milwaukee/
Wauwatosa ...

Field A

(314)872-7681

- (201)488-1200
. (914)473-8102

(516)231-9000
(716)248-5494
(315)455-7373

- (919)876-6025

(216)461-3160
(513)294-2231

(614)846-9460
(918)664-5227
(503)641-3681

(215)443-9400
(615)690-5592
(512)452-7673
(214)931-9222
(713)783-6400
(801)539-1190
(804)977-3691
(206)454-4160
- (206)622-9960

- (301)577-2600

(414)476-5554

9
AII Sales Offices

Through

MOTOROLA SEMICONDUCTOR—CANADA
MANITOBA, Winnipeg . (204)889-0693
ONTARIO, Downswew/Toron(o (416)661-6400
ONTARIO, Ottawa (613)235-4388
QUEBEC, Montreal (514)731-6881

MOTOROLA SEMICONDUCTOR
INTRA-COMPANY OFFICES
ARIZONA, Scottsdale .. (602)949-3811
FLORIDA, Ft. Lauderdale (305)475-6120
ILLINOIS, Franklin Park/
Schaumburg . .
ILLINOIS, Schaumburg
ILLINOIS, Schaumburg/
Automotive (312)576-7800
TEXAS, Ft. Worth .. (817)232-6255

MOTOROLA SEMICONDUCTUH

INTERNATIONAL SALES OFFICES
AUSTRALIA, Melbourne (03)561-3555

(312)576-2788
(312)576-5518

AUSTRALIA, Sydney 438-1955
439-2242
AUSTRIA, Vienna (0222)65 01 26
BRAZIL, Sao Paulo . ..707-21
DENMARK, Gladsaxevej ... (01)67 44 22
ENGLAND, Wembley. Middlesex ... 01-902-8836
FRANCE, Grenoble (076)90 22 81
FRANCE, Paris .. . (01)555-91-01
FRANCE, Toulouse .. (061)41 1188

GERMANY, Langenhagen/

Hannover (0511)78-20-37

GERMANY, Munich . - (089)92 481
GERMANY, Nurenberg (0911)65761
GERMANY, Sindelfingen (07031)83074

GERMANY, Wiesbaden

.. (06121)76-1921
HONG KONG, Hung Hom.

Kowloon .. 3-632201-8
3-336211-22

ISRAEL, Tel Aviv 338973
ITALY, Boloona (051)533 446
ITALY, Milar: -(02)824 2021
824-2046

ITALY, Rome ..(03)831 4746
JAPAN, Osaka -(06)305 1421
JAPAN, Tokyo 03-440-3311
OREA, Seoul . 261-7137
MEXICO, D F. .. (525)524-0706
NETHERLANDS U"ech(-.(030)443 808
ORWAY, Osio (02)671467
SCOTLAND East Kilbride .. - (03552)39 101
SINGAPORI L...... 2945438
SOUTH AFRICA Bramley 786 1184
SPAIN, Madrid .. (01)279 0802
SWEDEN, Solna 08/82 02 95

SWITZERLAND, Geneva ...
SWITZERLAND, Zurich
TAIWAN, Taipei

---(022)991 111
(01)730 40 74
7528944-9

PO. BOX 20912 PHOENIX, ARIZONA 85036 ¢ A SUBSIDIARY OF MOTOROLA INC.

16718-7

PRINTED IN USA

12-83 IMPERIAL LITHO C18479 60,000

